A 91-GHz Fundamental VCO With 6.1% DC-to-RF Efficiency and 4.5 dBm Output Power in 0.13- $\mu$ m CMOS

In this letter, we present a systematic method for designing high-efficiency, high-power millimeter wave oscillators. This method effectively manipulates the dc current of the drain of the core transistors to minimize the time during which the transistor is on. Furthermore, an additional capacitor at the source of the transistor assists lowering the power consumption while maintaining the same fundamental generated power. To show the feasibility of this method, a class-E-type oscillator architecture is implemented in a 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS technology (<inline-formula> <tex-math notation="LaTeX">$f_{\max } = 116$ </tex-math></inline-formula> GHz). The proposed voltage-controlled oscillator (VCO) achieves the record DC-to-RF efficiency of 6.1% at a center frequency of 91 GHz (~0.8*<inline-formula> <tex-math notation="LaTeX">${f} _{\max }$ </tex-math></inline-formula>) on CMOS. The measured peak output power is 4.5 dBm while the VCO consumes 46 mW of dc power and features a figure of merit of −169.6 dBc/Hz at 1-MHz offset frequency. The fabricated VCO occupies 0.51 mm<sup>2</sup> of silicon area including the pads.

[1]  Rinaldo Castello,et al.  Analysis and Design of a 195.6 dBc/Hz Peak FoM P-N Class-B Oscillator With Transformer-Based Tail Filtering , 2015, IEEE Journal of Solid-State Circuits.

[2]  Ning Zhang,et al.  94 GHz Voltage Controlled Oscillator With 5.8% Tuning Range in Bulk CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[3]  Eran Socher,et al.  Wide tuning range W-band Colpitts VCO in 90 nm CMOS , 2011 .

[4]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[5]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[6]  Nathan O. Sokal,et al.  Class of High-Efficiency Tuned Switching Power Amplifiers , 2009 .

[7]  Harish Krishnaswamy,et al.  High power, high efficiency stacked mmWave Class-E-like power amplifiers in 45nm SOI CMOS , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[8]  Ehsan Afshari,et al.  A 105-GHz VCO With 9.5% Tuning Range and 2.8-mW Peak Output Power in a 65-nm Bulk CMOS Process , 2014, IEEE Transactions on Microwave Theory and Techniques.

[9]  H. Krishnaswamy,et al.  216- and 316-GHz 45-nm SOI CMOS Signal Sources Based on a Maximum-Gain Ring Oscillator Topology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[10]  M Kraemer,et al.  A High Efficiency Differential 60 GHz VCO in a 65 nm CMOS Technology for WSN Applications , 2011, IEEE Microwave and Wireless Components Letters.

[11]  P.R. Kinget,et al.  Tail Current-Shaping to Improve Phase Noise in LC Voltage-Controlled Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[13]  Ehsan Afshari,et al.  A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy , 2013, IEEE Journal of Solid-State Circuits.

[14]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.