Smart Manufacturing Process of Carbon-Based Low-Dimensional Structures and Fiber-Reinforced Polymer Composites for Engineering Applications

[1]  C. Shuai,et al.  Molybdenum disulfide nanosheets embedded with nanodiamond particles: co-dispersion nanostructures as reinforcements for polymer scaffolds , 2019 .

[2]  A. Pegoretti,et al.  Polyhydroxyalkanoates/Fibrillated Nanocellulose Composites for Additive Manufacturing , 2019, Journal of Polymers and the Environment.

[3]  C. Shuai,et al.  Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. , 2019, International journal of biological macromolecules.

[4]  C. Shuai,et al.  A graphene oxide-Ag co-dispersing nanosystem: Dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds , 2018, Chemical Engineering Journal.

[5]  A. Yu,et al.  Graphene-supported 2D transition metal oxide heterostructures , 2018 .

[6]  A. Pegoretti,et al.  Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application , 2018, Materials Today Communications.

[7]  A. Pegoretti,et al.  3D printable thermoplastic polyurethane blends with thermal energy storage/release capabilities , 2018, Materials Today Communications.

[8]  T. K. Kundra,et al.  Additive Manufacturing Technologies , 2018 .

[9]  Haeshin Lee,et al.  A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing , 2018, NPG Asia Materials.

[10]  L. Fambri,et al.  Polyvinyl alcohol reinforced with carbon nanotubes for fused deposition modeling , 2018 .

[11]  H. Colorado,et al.  Additive Manufacturing of Epoxy Resin Matrix Reinforced with Magnetic Particles , 2018 .

[12]  M. Heres,et al.  Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy , 2018 .

[13]  Haidong Wu,et al.  Research into the mechanical properties, sintering mechanism and microstructure evolution of Al2O3-ZrO2 composites fabricated by a stereolithography-based 3D printing method , 2018 .

[14]  J. Biegert,et al.  Ultrafast nonlinear optical response of Dirac fermions in graphene , 2018, Nature Communications.

[15]  K. Zhou,et al.  Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering , 2018 .

[16]  Wenfeng Hao,et al.  Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites , 2018 .

[17]  K. Evans,et al.  A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering , 2018 .

[18]  Wai Yee Yeong,et al.  Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics , 2018 .

[19]  Luca Fambri,et al.  Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites , 2018, Nanomaterials.

[20]  D. Lin,et al.  A review on additive manufacturing of polymer-fiber composites , 2017 .

[21]  Liqun Li,et al.  Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by laser melting deposition , 2017 .

[22]  H. Friedrich,et al.  3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling , 2017 .

[23]  T. Peijs,et al.  Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves , 2017 .

[24]  D. Janas,et al.  Unexpectedly strong hydrophilic character of free-standing thin films from carbon nanotubes , 2017, Scientific Reports.

[25]  Suejit Pechprasarn,et al.  Graphene-Based Materials for Biosensors: A Review , 2017, Sensors.

[26]  K. Leitz,et al.  Multi-physical simulation of selective laser melting , 2017 .

[27]  F. Calignano,et al.  Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction , 2017 .

[28]  K. McDonnell,et al.  Fabrication of Continuous Carbon, Glass and Kevlar fibre reinforced polymer composites using Additive Manufacturing , 2017 .

[29]  N. Gupta,et al.  Prediction of modulus at various strain rates from dynamic mechanical analysis data for polymer matrix composites , 2017 .

[30]  Mohammad A. Saed,et al.  Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating , 2017, Science Advances.

[31]  Chee Kai Chua,et al.  Fundamentals and applications of 3D printing for novel materials , 2017 .

[32]  K. Zhou,et al.  Toughening of polyamide 11 with carbon nanotubes for additive manufacturing , 2017 .

[33]  A. Pegoretti,et al.  Electrically conductive nanocomposites for fused deposition modelling , 2017 .

[34]  Amanda S. Wu,et al.  3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties , 2017, Scientific Reports.

[35]  Liangbing Hu,et al.  Progress in 3D Printing of Carbon Materials for Energy‐Related Applications , 2017, Advanced materials.

[36]  Martin L. Dunn,et al.  Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines , 2017 .

[37]  Hui Wang,et al.  Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties , 2017 .

[38]  Xin Wang,et al.  3D printing of polymer matrix composites: A review and prospective , 2017 .

[39]  Hang Zhou,et al.  3D Printing of Carbon Nanotubes-Based Microsupercapacitors. , 2017, ACS applied materials & interfaces.

[40]  Dong-Woo Cho,et al.  3D Printing of Organs-On-Chips , 2017, Bioengineering.

[41]  Ayesha Kausar,et al.  Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay , 2017 .

[42]  Frederic Roger,et al.  Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling , 2017 .

[43]  J. Lewis,et al.  Printing soft matter in three dimensions , 2016, Nature.

[44]  Michael Chapiro,et al.  Current achievements and future outlook for composites in 3D printing , 2016 .

[45]  J. Davy,et al.  Acoustic properties of a porous polycarbonate material produced by additive manufacturing , 2016 .

[46]  C. Yan,et al.  A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites , 2016, Scientific Reports.

[47]  Dichen Li,et al.  Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites , 2016 .

[48]  C. Shuai,et al.  A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds , 2016, International journal of nanomedicine.

[49]  W. Cong,et al.  Carbon Nanotube Reinforced Fused Deposition Modeling Using Microwave Irradiation , 2016 .

[50]  L. Fambri,et al.  Fused deposition modelling with ABS–graphene nanocomposites , 2016 .

[51]  Martin Pumera,et al.  3D-printing technologies for electrochemical applications. , 2016, Chemical Society reviews.

[52]  Brett Paull,et al.  A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices , 2016 .

[53]  Le Hoang Sinh,et al.  Fabrication of graphene‐based 3D structures by stereolithography , 2016 .

[54]  Tian Li,et al.  Graphene Oxide‐Based Electrode Inks for 3D‐Printed Lithium‐Ion Batteries , 2016, Advanced materials.

[55]  A. Todoroki,et al.  Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation , 2016, Scientific Reports.

[56]  F. Castles,et al.  Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites , 2016, Scientific Reports.

[57]  A. Salem,et al.  Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements , 2016 .

[58]  Majeda Khraisheh,et al.  Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications , 2016 .

[59]  Chao Gao,et al.  Graphene fiber: a new trend in carbon fibers , 2015 .

[60]  Xiaohong Qin,et al.  Additive manufacturing of multi-directional preforms for composites: opportunities and challenges , 2015 .

[61]  Randall M. Erb,et al.  Designing bioinspired composite reinforcement architectures via 3D magnetic printing , 2015, Nature Communications.

[62]  A. Studart,et al.  Multimaterial magnetically assisted 3D printing of composite materials , 2015, Nature Communications.

[63]  Feng Zhang,et al.  3D stereolithography printing of graphene oxide reinforced complex architectures , 2015, Nanotechnology.

[64]  W. Cong,et al.  Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling , 2015 .

[65]  Andrew J. Capel,et al.  Solid-state additive manufacturing for metallized optical fiber integration , 2015 .

[66]  Marinella Levi,et al.  Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling , 2015 .

[67]  Wei Jiang,et al.  3D Printable Graphene Composite , 2015, Scientific Reports.

[68]  R. Lopez-Anido,et al.  Experimental investigation of three-dimensional woven composites , 2015 .

[69]  Angelo Pc Micro and Nano Fabrication by Powder Metallurgy , 2015 .

[70]  Alexandra L. Rutz,et al.  Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. , 2015, ACS nano.

[71]  Ali Fatemi,et al.  Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites , 2015 .

[72]  SaariMatt,et al.  Fiber Encapsulation Additive Manufacturing: An Enabling Technology for 3D Printing of Electromechanical Devices and Robotic Components , 2015 .

[73]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[74]  L. Love,et al.  Highly oriented carbon fiber–polymer composites via additive manufacturing , 2014 .

[75]  Geoffrey M Spinks,et al.  Three-dimensional printing fiber reinforced hydrogel composites. , 2014, ACS applied materials & interfaces.

[76]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[77]  T. Moritz,et al.  Studies on thermoplastic 3D printing of steel–zirconia composites , 2014 .

[78]  Robert J. Strong,et al.  A review of melt extrusion additive manufacturing processes: I. Process design and modeling , 2014 .

[79]  Alberto Boschetto,et al.  Accuracy prediction in fused deposition modeling , 2014 .

[80]  S. Banerjee,et al.  An electronic structure perspective of graphene interfaces. , 2014, Nanoscale.

[81]  S. Liao,et al.  Carbon Nanotubes Reinforced Composites for Biomedical Applications , 2014, BioMed research international.

[82]  P. Dudek,et al.  FDM 3D Printing Technology in Manufacturing Composite Elements , 2013 .

[83]  M. Buehler,et al.  Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing , 2013 .

[84]  Liang Hou,et al.  Additive manufacturing and its societal impact: a literature review , 2013 .

[85]  H. Kim,et al.  Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. , 2013, Journal of biomedical materials research. Part A.

[86]  Shuhong Yu,et al.  Flexible graphene–polyaniline composite paper for high-performance supercapacitor , 2013 .

[87]  T. Das,et al.  Graphene-Based Polymer Composites and Their Applications , 2013 .

[88]  Toly Chen,et al.  Advanced dispatching rules for large-scale manufacturing systems , 2013 .

[89]  Geunhyung Kim,et al.  The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration. , 2013, Journal of materials chemistry. B.

[90]  Hyo chan Kim,et al.  Synthesis of PA12/functionalized GNP nanocomposite powders for the selective laser sintering process , 2013 .

[91]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[92]  X. Qu,et al.  New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide , 2013, Advanced materials.

[93]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[94]  Peter Dubruel,et al.  A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. , 2012, Biomaterials.

[95]  R. Resende,et al.  Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering , 2012, International journal of nanomedicine.

[96]  Loïc Jacot-Descombes,et al.  Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing , 2012 .

[97]  L. Nyholm,et al.  Paper‐Based Energy‐Storage Devices Comprising Carbon Fiber‐Reinforced Polypyrrole‐Cladophora Nanocellulose Composite Electrodes , 2012 .

[98]  Soojin Park,et al.  Carbon Fiber‐Reinforced Polymer Composites: Preparation, Properties, and Applications , 2012 .

[99]  Liang Hao,et al.  Preparation, characterisation and processing of carbon fibre/polyamide-12 composites for selective laser sintering , 2011 .

[100]  F. Caiazzo,et al.  Evolution of Direct Selective Laser Sintering of Metals , 2011 .

[101]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[102]  G. Eda,et al.  Graphene oxide as a chemically tunable platform for optical applications. , 2010, Nature chemistry.

[103]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[104]  F. Melchels,et al.  A review on stereolithography and its applications in biomedical engineering. , 2010, Biomaterials.

[105]  Suman Das,et al.  Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering , 2010 .

[106]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[107]  Jean-Pierre Kruth,et al.  Composites by rapid prototyping technology , 2010 .

[108]  M. Dresselhaus,et al.  Perspectives on carbon nanotubes and graphene Raman spectroscopy. , 2010, Nano letters.

[109]  A. Blayo,et al.  The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions , 2009, Nanotechnology.

[110]  W. Bauhofer,et al.  A review and analysis of electrical percolation in carbon nanotube polymer composites , 2009 .

[111]  Hagen Klauk,et al.  Carbon‐Based Field‐Effect Transistors for Nanoelectronics , 2009, Advanced materials.

[112]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[113]  Wei Sun,et al.  Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[114]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[115]  M. Terrones,et al.  Magnetic properties of carbon nanostructures , 2007 .

[116]  A. Eletskii Mechanical properties of carbon nanostructures and related materials , 2007 .

[117]  L. K. Keppas,et al.  Stress analysis of short fiber-reinforced polymers incorporating a hybrid interphase region , 2007 .

[118]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[119]  Ryan B. Wicker,et al.  Functionalizing stereolithography resins: effects of dispersed multi‐walled carbon nanotubes on physical properties , 2006 .

[120]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[121]  N. Jawahar,et al.  Optimization of stereolithography process parameters for part strength using design of experiments , 2006 .

[122]  Hui Hu,et al.  Bone cell proliferation on carbon nanotubes. , 2006, Nano letters.

[123]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[124]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[125]  Manfred Geiger,et al.  Rapid Tooling by Laminated Object Manufacturing of Metal Foil , 2005 .

[126]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[127]  A. Thie,et al.  Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth , 2004 .

[128]  S. Advani,et al.  Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites , 2003 .

[129]  Werner J. Blau,et al.  Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions , 2003 .

[130]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[131]  A. Ogale,et al.  Dual curing of carbon fiber reinforced photoresins for rapid prototyping , 2002 .

[132]  L. Froyen,et al.  Lasers and materials in selective laser sintering , 2002 .

[133]  Andreas Züttel,et al.  Hydrogen sorption by carbon nanotubes and other carbon nanostructures , 2002 .

[134]  Sridhar Venigalla,et al.  Polymer Matrix Composites , 2001 .

[135]  M. Knupfer Electronic properties of carbon nanostructures , 2001 .

[136]  Marit Jagtoyen,et al.  Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors , 2001 .

[137]  J. Lewis,et al.  Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions , 1999 .

[138]  E. Barbero Introduction to Composite Materials Design , 1998 .

[139]  B. Stucker,et al.  Additive Manufacturing Technologies , 2021 .

[140]  Krishan K. Chawla,et al.  Polymer Matrix Composites , 2019, Composite Materials.

[141]  A. Bunsell,et al.  Handbook of properties of textile and technical fibres , 2018 .

[142]  Bradley A. Newcomb,et al.  The properties of carbon fibers , 2018 .

[143]  Y. Hagedorn Laser additive manufacturing of ceramic components: Materials, processes, and mechanisms , 2017 .

[144]  F. Naya,et al.  Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects , 2017 .

[145]  V. Srivastava A Reviev on Advances in Rapid Prototype 3D Printing of Multi-Functional Applications , 2017 .

[146]  A. Todoroki,et al.  3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens , 2016 .

[147]  S. Chandrasekaran,et al.  New functions in polymer composites using a nanoparticle-modified matrix , 2015 .

[148]  Wei Liu,et al.  The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials , 2013 .

[149]  Shoufeng Yang,et al.  A review on 3D micro-additive manufacturing technologies , 2013 .

[150]  F. Choy,et al.  Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement , 2011 .

[151]  A. Dibenedetto,et al.  Harnessing the properties of fiber-reinforced composites in the design of tissue-engineered scaffolds , 2010 .

[152]  David W. Rosen,et al.  Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing , 2009 .

[153]  Francisco del Monte,et al.  Multiwall carbon nanotube scaffolds for tissue engineering purposes. , 2008, Biomaterials.

[154]  Yang Wei-we,et al.  A Review on , 2008 .

[155]  Ryan B. Wicker,et al.  Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing , 2007 .

[156]  Seth Collins. Partain Fused deposition modeling with localized pre-deposition heating using forced air , 2007 .

[157]  A. Atala,et al.  Carbon nanotube applications for tissue engineering. , 2007, Biomaterials.

[158]  David W. Rosen,et al.  A process planning method for improving build performance in stereolithography , 2001, Comput. Aided Des..

[159]  Bernd Lauke,et al.  Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers , 1996 .

[160]  D.D.L. Chung,et al.  Carbon fiber composites , 1994 .