Finite-Element Analysis of Shear-off Failure of Keyed Dry Joints in Precast Concrete Segmental Bridges

© 2014 This work is made available under the terms of the Creative Commons Attribution 4.0 International license,. The structural behavior of precast concrete segmental bridges largely depends on the behavior of the joints between segments. The current practice of precast concrete segmental bridges is to use small keys that are usually unreinforced, normally dry, and distributed over the height of the web and the flange of concrete segments. In this study, a numerical analysis model was established based on finite-element code to investigate structural behavior of keyed dry joints under direct shear. The concrete damage plasticity model along with the pseudodamping scheme were incorporated to analyze the system for microcracks and to stabilize the solution, respectively. The numerical model was calibrated by full-scale experimental results described in the literature. It was found that the predicted ultimate load, cracking evolution history, and final crack pattern agreed reasonably well with experimental results. The validated numerical model was then used for parametric study on factors affecting shear behavior of keyed dry joints, in this case confining pressure. The authors found that shear capacity predicted by the AASHTO code equation diverges from that predicted by numerical analysis at high confining pressure, because the contribution of friction in the total shear capacity decreased with an increase in confining pressure. Hence, the authors recommend reducing the friction coefficient used in the AASHTO code equation when high confining pressure is applied. Moreover, the propagation of inclined crack was arrested at high confining pressure owing to the fact that the fracture propagation direction is governed by the criterion of the maximum energy release rate.

[1]  R W Poston,et al.  DURABILITY OF PRECAST SEGMENTAL BRIDGES , 1998 .

[2]  M. Kamiński,et al.  Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration , 2011 .

[3]  Theodossius P. Tassios,et al.  Concrete‐to‐Concrete Friction , 1987 .

[4]  P. A. Pfeiffer,et al.  Shear fracture tests of concrete , 1986 .

[5]  Xiangming Zhou,et al.  Shear Strength of Joints in Precast Concrete Segmental Bridges , 2003 .

[6]  Oral Buyukozturk,et al.  SHEAR BEHAVIOR OF JOINTS IN PRECAST CONCRETE SEGMENTAL BRIDGES , 1990 .

[7]  José Turmo,et al.  Shear Strength of Dry Joints of Concrete Precast Segmental Bridges , 2006 .

[8]  José Turmo,et al.  Shear strength of dry joints of concrete panels with and without steel fibres: Application to precast segmental bridges , 2006 .

[9]  Hirozo Mihashi,et al.  Analytical study on the cracking transition of concrete shear key , 1999 .

[10]  Jerome J. Connor,et al.  Fracture Mechanics Approach for Failure of Concrete Shear Key. II: Verification , 1993 .

[11]  Ali Abolmaali,et al.  Finite-Element Modeling and Analysis of Reinforced Concrete Box Culverts , 2009 .

[12]  Yoshio Kaneko Modelling of shear-off failure of concrete : fracture mechanics approach , 1992 .

[13]  G. Rombach,et al.  Precast segmental box girder bridges with external prestressing - design and construction - , 2002 .

[14]  José Turmo,et al.  Resistencia de juntas secas conjugadas de puentes de dovelas prefabricadas de hormigón : propuesta para el Eurocódigo 2 , 2006 .

[15]  Jerome J. Connor,et al.  Fracture Mechanics Approach for Failure of Concrete Shear Key. I: Theory , 1993 .

[17]  Yu Lei,et al.  Combined Shear and Bending Behavior of Joints in Precast Concrete Segmental Beams with External Tendons , 2013 .

[18]  Mohsen A. Issa,et al.  Structural behavior of single key joints in precast concrete segmental bridges , 2007 .

[19]  J E Breen,et al.  EXPLORATORY STUDY OF SHEAR STRENGHT OF JOINTS FOR PRECAST SEGMENTAL BRIDGES , 1983 .

[20]  A W Beeby,et al.  CONCISE EUROCODE FOR THE DESIGN OF CONCRETE BUILDINGS. BASED ON BSI PUBLICATION DD ENV 1992-1-1: 1992. EUROCODE 2: DESIGN OF CONCRETE STRUCTURES. PART 1: GENERAL RULES AND RULES FOR BUILDINGS , 1993 .

[21]  Hyun-Mock Shin,et al.  Numerical Study on the Joints between Precast Post-Tensioned Segments , 2007 .

[22]  Héctor Cifuentes,et al.  Influencia del número de llaves en la resistencia a cortante de juntas secas postensadas , 2013 .