Observation of metal precipitates at prebreakdown sites in multicrystalline silicon solar cells

The local prebreakdown behavior of a damage etched multicrystalline silicon solar cell produced from virgin grade feedstock was characterized. At the position of micrometer-scaled prebreakdown sites, which correlate with recombination active defects found along grain boundaries, micro-x-ray fluorescence mappings revealed the presence of Fe precipitate colonies. These measurements represent direct evidence that transition metal clusters lead to decreased breakdown voltage and cause soft diode breakdown.

[1]  W. Kwapil,et al.  Micro‐photoluminescence spectroscopy on metal precipitates in silicon , 2009 .

[2]  K. Ravi,et al.  Oxidation‐induced stacking faults in silicon. II. Electrical effects in P N diodes , 1974 .

[3]  O. Vyvenko,et al.  Synchrotron microscopy and spectroscopy for analysis of crystal defects in silicon , 2009 .

[4]  W. Mönch,et al.  On the Physics of Avalanche Breakdown in Semiconductors , 1969 .

[5]  Wilhelm Warta,et al.  Diode breakdown related to recombination active defects in block-cast multicrystalline silicon solar cells , 2009 .

[6]  Otwin Breitenstein,et al.  Lock-in thermography : basics and use for functional diagnostics of electronic components , 2003 .

[7]  Otwin Breitenstein,et al.  Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits , 2009 .

[8]  A. Istratov,et al.  Iron contamination in silicon technology , 2000 .

[9]  Marius Grundmann,et al.  Correlation of pre‐breakdown sites and bulk defects in multicrystalline silicon solar cells , 2009 .

[10]  T. Fuyuki,et al.  Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence , 2005 .

[11]  A. G. Chynoweth,et al.  Internal Field Emission in Silicon p-n Junctions , 1957 .

[12]  T. Fuyuki,et al.  Comprehensive study of electroluminescence in multicrystalline silicon solar cells , 2009 .

[13]  W. Shockley Problems related to p-n junctions in silicon , 1961 .

[14]  Eicke R. Weber,et al.  Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells , 2005 .

[15]  M. Negoita,et al.  Metallic precipitate contribution to generation and recombination currents in p-n junction devices due to the Schottky effect , 2003 .

[16]  Direct evidence of internal Schottky barriers at NiSi2 precipitates in silicon by electron holography , 2005 .

[17]  E. Weber,et al.  Gettering of metallic impurities in photovoltaic silicon , 1997 .

[18]  W. Shockley,et al.  Metal Precipitates in Silicon p‐n Junctions , 1960 .

[19]  T. Tan,et al.  Schottky effect model of electrical activity of metallic precipitates in silicon , 2000 .

[20]  A. G. Chynoweth,et al.  Photon Emission from Avalanche Breakdown in Silicon , 1956 .

[21]  O. Breitenstein,et al.  Observation of transition metals at shunt locations in multicrystalline silicon solar cells , 2004 .

[22]  M. Werner,et al.  Nanometer-scale metal precipitates in multicrystalline silicon solar cells , 2001 .

[23]  Klaus Graff,et al.  Metal impurities in silicon-device fabrication , 1994 .