Metric-based iterative closest point scan matching for sensor displacement estimation

This paper addresses the scan matching problem for mobile robot displacement estimation. The contribution is a new metric distance and all the tools necessary to be used within the iterative closest point framework. The metric distance is defined in the configuration space of the sensor, and takes into account both translation and rotation error of the sensor. The new scan matching technique ameliorates previous methods in terms of robustness, precision, convergence, and computational load. Furthermore, it has been extensively tested to validate and compare this technique with existing methods

[1]  Luis Montesano,et al.  Lessons Learned in Integration for Sensor-Based Robot Navigation Systems , 2006 .

[2]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[3]  Hongyan Wang,et al.  The complexity of the two dimensional curvature-constrained shortest-path problem , 1998 .

[4]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[5]  Rafael Gutiérrez,et al.  Direct motion estimation from a range scan sequence , 1999, J. Field Robotics.

[6]  Riccardo Poli,et al.  Robust mobile robot localisation from sparse and noisy proximity readings using Hough transform and probability grids , 2001, Robotics Auton. Syst..

[7]  Jean-Paul Laumond,et al.  Metric induced by the shortest paths for a car-like mobile robot , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[8]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Luis Montesano,et al.  Modeling the Static and the Dynamic Parts of the Environment to Improve Sensor-based Navigation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  John Canny,et al.  Shortest Paths for a Car-like Robot to Manifolds in Configuration Space , 1996, Int. J. Robotics Res..

[11]  Stergios I. Roumeliotis,et al.  Weighted range sensor matching algorithms for mobile robot displacement estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Gerhard Weiss,et al.  A map based on laserscans without geometric interpretation , 1999 .

[13]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[14]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[15]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains: Functions and Integration , 2002, Int. J. Robotics Res..

[16]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[17]  P. Souéres,et al.  Set of reachable positions for a car , 1994, IEEE Transactions on Automatic Control.

[18]  J. Sussmann,et al.  SHORTEST PATHS FOR THE REEDS-SHEPP CAR: A WORKED OUT EXAMPLE OF THE USE OF GEOMETRIC TECHNIQUES IN NONLINEAR OPTIMAL CONTROL. 1 , 1991 .

[19]  Peter Biber,et al.  The normal distributions transform: a new approach to laser scan matching , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[21]  José A. Castellanos,et al.  Constraint-based mobile robot localization , 1996 .

[22]  Marilena Vendittelli,et al.  Obstacle distance for car-like robots , 1999, IEEE Trans. Robotics Autom..

[23]  P. Soueres,et al.  Shortest paths to obstacles for a polygonal car-like robot , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[24]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[25]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[26]  Pavel Krsek,et al.  The Trimmed Iterative Closest Point algorithm , 2002, Object recognition supported by user interaction for service robots.

[27]  Sebastian Thrun,et al.  Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[28]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains Functions and Integration , 2000, ISER.

[29]  Guy Desaulniers On shortest paths for a car-like robot maneuvering around obstacles , 1996, Robotics Auton. Syst..

[30]  Jean-Daniel Boissonnat,et al.  Shortest paths of bounded curvature in the plane , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[31]  G. Swaminathan Robot Motion Planning , 2006 .

[32]  P. Souéres,et al.  Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..

[33]  John F. Canny,et al.  Using skeletons for nonholonomic path planning among obstacles , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[34]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..