Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films

We have investigated the effects of different post‐deposition temperature anneals and N‐H concentrations, on the generation of ultraviolet (UV)‐induced two‐coordinated nitrogen dangling bonds in plasma‐enhanced chemical vapor deposited (PECVD) silicon nitride films using electron spin resonance (ESR). It is shown that the nitrogen dangling bond is activated by post‐deposition anneals with temperatures as low as 500 °C in N‐rich PECVD nitride films followed by subsequent UV broadband illumination. It also appears that there is a possible correlation between the initial N‐H concentration in the films and the concentration of generated nitrogen dangling bonds following the anneal/UV sequence. We also report the charge state associated with the nitrogen dangling bond using a combination of ESR and capacitance versus voltage measurements; these measurements suggest that this two‐coordinated defect is electrically neutral when paramagnetic.

[1]  Jerzy Kanicki,et al.  Structural identification of the silicon and nitrogen dangling‐bond centers in amorphous silicon nitride , 1991 .

[2]  M. Matsuda,et al.  Bonding configuration and defects in amorphous SiNx:H films , 1991 .

[3]  John Robertson,et al.  ELECTRONIC-STRUCTURE OF SILICON-NITRIDE , 1991 .

[4]  W. Jackson,et al.  SPATIAL PROFILING OF ELECTRON TRAPS IN SILICON NITRIDE THIN FILMS , 1990 .

[5]  J. Kanicki,et al.  Photobleaching of light‐induced paramagnetic defects in amorphous silicon nitride films , 1990 .

[6]  Yoshiaki Kamigaki,et al.  A new portrayal of electron and hole traps in amorphous silicon nitride , 1990 .

[7]  J. Kanicki,et al.  Stretched exponential illumination time dependence of positive charge and spin generation in amorphous silicon nitride , 1990 .

[8]  Warren,et al.  Electron-nuclear double-resonance and electron-spin-resonance study of silicon dangling-bond centers in silicon nitride. , 1990, Physical review. B, Condensed matter.

[9]  Warren,et al.  First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride. , 1990, Physical review letters.

[10]  D. Krick,et al.  Evidence for a negative electron‐electron correlation energy in the dominant deep trapping center in silicon nitride films , 1990 .

[11]  Patrick M. Lenahan,et al.  First observation of the 29Si hyperfine spectra of silicon dangling bond centers in silicon nitride , 1990 .

[12]  M. J. Powell The physics of amorphous-silicon thin-film transistors , 1989 .

[13]  V. Nadolinnyi,et al.  Photo-induced metastable states in silicon nitride amorphous layers , 1989 .

[14]  D. Krick,et al.  The nature of the dominant deep trap in amorphous silicon nitride films: Evidence for a negative correlation energy , 1989 .

[15]  J. Kanicki,et al.  Investigation of the light-induced effects in nitrogen-rich silicon nitride films , 1989 .

[16]  N. Lustig,et al.  Gate dielectric and contact effects in hydrogenated amorphous silicon‐silicon nitride thin‐film transistors , 1989 .

[17]  M. Gower,et al.  Epitaxial growth of thin films of BaTiO3 using excimer laser ablation , 1989 .

[18]  J. Stathis,et al.  Observation of multiple silicon dangling bond configurations in silicon nitride , 1989 .

[19]  D. Krick,et al.  Electrically active point defects in amorphous silicon nitride: An illumination and charge injection study , 1988 .

[20]  Tsai,et al.  Characterization of a nitrogen center in high-purity SiO2:OH glass. , 1988, Physical review. B, Condensed matter.

[21]  J. Kanicki Role of Hydrogen in Silicon Nitride Films Prepared by Various Deposition Techniques , 1988 .

[22]  D. Krick,et al.  Stable photoinduced paramagnetic defects in hydrogenated amorphous silicon nitride , 1987 .

[23]  Warren B. Jackson,et al.  Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy , 1987 .

[24]  C. Denisse,et al.  Annealing of plasma silicon oxynitride films , 1986 .

[25]  Tatsuo Shimizu,et al.  Hydrogen Evolution from Amorphous Si–N Films , 1986 .

[26]  A. J. Lowe,et al.  The electronic properties of plasma‐deposited films of hydrogenated amorphous SiNx (0 , 1986 .

[27]  M. Maeda,et al.  Hydrogen bonding configurations in silicon nitride films prepared by plasma‐enhanced deposition , 1985 .

[28]  E. Friebele,et al.  Nitrogen-associated paramagnetic defect centers in sputtered SiO2 films , 1985 .

[29]  H. Stein Thermally annealed silicon nitride films: Electrical characteristics and radiation effects , 1985 .

[30]  Akio Sasaki,et al.  Dangling Bonds in Memory‐Quality Silicon Nitride Films , 1985 .

[31]  Tatsuo Shimizu,et al.  Photo-Induced ESR in Amorphous Si1-xNx:H Films , 1984 .

[32]  John Robertson,et al.  Gap states in silicon nitride , 1984 .

[33]  Robert S. Bailey,et al.  Hydrogen‐related memory traps in thin silicon nitride films , 1983 .

[34]  Y. Hsia,et al.  Empirical study of the metal‐nitride‐oxide‐semiconductor device characteristics deduced from a microscopic model of memory traps , 1982 .

[35]  R. Hezel,et al.  Plasma Si nitride: A promising dielectric to achieve high-quality silicon MIS/IL solar cells , 1981 .

[36]  H. Stein,et al.  Properties of Plasma‐Deposited Silicon Nitride , 1979 .

[37]  C. T. Kirk Valence alternation pair model of charge storage in MNOS memory devices , 1979 .

[38]  R. Williams,et al.  The effect of electrical conduction of Si3N4on the discharge of MNOS memory transistors , 1978, IEEE Transactions on Electron Devices.

[39]  H. Wegener,et al.  Chemically bound hydrogen in CVD Si/sub 3/N/sub 4/: dependence on NH/sub 3//SiH/sub 4/ ratio and on annealing , 1977 .

[40]  H. Maes,et al.  Simple technique for determination of centroid of nitride charge in MNOS structures , 1975 .

[41]  D. Dimaria,et al.  Hole injection into silicon nitride: Dark current dependence on electrode materials and insulator thickness , 1975 .

[42]  P. Arnett,et al.  Silicon nitride trap properties as revealed by charge−centroid measurements on MNOS devices , 1975 .

[43]  P. H. Kasai,et al.  Electron spin resonance spectrum of the NF2 radical isolated in a neon matrix at 4°K , 1965 .