Robust synchronization of fractional-order unified chaotic systems via linear control

A new scheme for accomplishing synchronization between two fractional-order unified chaotic systems is proposed in this paper. The scheme does not require that the nonlinear dynamics of the synchronization error system must be eliminated. Moreover, the parameter of the systems does not have to be known. A controller is a linear feedback controller, which is simple in implementation. It is designed based on an LMI condition. The LMI condition guarantees that the synchronization between the slave system and the master system is achieved. Numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.

[1]  Zheng-Ming Ge,et al.  Chaos in a fractional order modified Duffing system , 2007 .

[2]  Chao-Chung Peng,et al.  Robust chaotic control of Lorenz system by backstepping design , 2008 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[5]  Yongguang Yu Adaptive synchronization of a unified chaotic system , 2008 .

[6]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[7]  Wei Zhang,et al.  Finite-time chaos synchronization of unified chaotic system with uncertain parameters , 2009 .

[8]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[9]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[10]  Juebang Yu,et al.  Chaos in the fractional order periodically forced complex Duffing’s oscillators , 2005 .

[11]  Wang Qiao,et al.  Comparison between two different sliding mode controllers for a fractional-order unified chaotic system , 2011 .

[12]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[13]  Baogui Xin,et al.  Projective synchronization of chaotic fractional-order energy resources demand–supply systems via linear control , 2011 .

[14]  Yan Xu,et al.  Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control , 2010 .

[15]  Giuseppe Grassi,et al.  Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems , 2012 .

[16]  Faqiang Wang,et al.  Synchronization of unified chaotic system based on passive control , 2007 .

[17]  Weihua Deng,et al.  The evolution of chaotic dynamics for fractional unified system , 2008 .

[18]  Jian-Qiang Xu,et al.  Adaptive synchronization of the fractional-order unified chaotic system with uncertain parameters , 2011, Proceedings of the 30th Chinese Control Conference.

[19]  D. Cafagna,et al.  Fractional calculus: A mathematical tool from the past for present engineers [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[20]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[21]  Nathalie Corson,et al.  Synchronization of Chaotic fractional-Order Systems via Linear Control , 2010, Int. J. Bifurc. Chaos.

[22]  Shouming Zhong,et al.  Design of sliding mode controller for a class of fractional-order chaotic systems , 2012 .

[23]  Sachin Bhalekar,et al.  Chaos in fractional ordered Liu system , 2010, Comput. Math. Appl..

[24]  Suwat Kuntanapreeda,et al.  Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains , 2010 .

[25]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[26]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[27]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[28]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[29]  Changpin Li,et al.  On chaos synchronization of fractional differential equations , 2007 .

[30]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[31]  Mohammad Saleh Tavazoei,et al.  Synchronization of uncertain chaotic systems using active sliding mode control , 2007 .

[32]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[33]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[34]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[35]  Suwat Kuntanapreeda,et al.  Chaos synchronization of unified chaotic systems via LMI , 2009 .

[36]  Reza Ghaderi,et al.  Sliding mode synchronization of an uncertain fractional order chaotic system , 2010, Comput. Math. Appl..

[37]  Uchechukwu E. Vincent,et al.  Synchronization and anti-synchronization of chaos in an extended Bonhöffer–van der Pol oscillator using active control , 2009 .

[38]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .

[39]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[40]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[41]  Mohammad Saleh Tavazoei,et al.  Robust synchronization of perturbed Chen's fractional-order chaotic systems , 2011 .