Multi-object particle filter revisited

Instead of the filtering density, we are interested in the entire posterior density that describes the random set of object trajectories. So far only Markov Chain Monte Carlo (MCMC) technique have been proposed to approximate the posterior distribution of the set of trajectories. Using labeled random finite set we show how the classical multi-object particle filter (a direct generalisation of the standard particle filter to the multi-object case) can be used to recursively compute posterior distribution of the set of trajectories. The result is a generic Bayesian multi-object tracker that does not require re-computing the posterior at every time step nor running a long Markov chain, and is much more efficient than the MCMC approximations.

[1]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[2]  Ba-Ngu Vo,et al.  Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach , 2006, IEEE Transactions on Signal Processing.

[3]  Klaus C. J. Dietmayer,et al.  Real-Time Multi-Object Tracking using Random Finite Sets , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[5]  Y. Boers,et al.  Particle filter track-before-detect application using inequality constraints , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[6]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[7]  Mark Coates,et al.  Computationally-Tractable Approximate PHD and CPHD Filters for Superpositional Sensors , 2013, IEEE Journal of Selected Topics in Signal Processing.

[8]  Jason L. Williams Hybrid Poisson and multi-Bernoulli filters , 2012, 2012 15th International Conference on Information Fusion.

[9]  Mark Coates,et al.  Particle filter implementation of the multi-Bernoulli filter for superpositional sensors , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[10]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[11]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[12]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[13]  Vikram Krishnamurthy,et al.  Multitarget Tracking Using Multiple Hypothesis Tracking , 2012 .

[14]  David Suter,et al.  Visual tracking of numerous targets via multi-Bernoulli filtering of image data , 2012, Pattern Recognit..

[15]  Samuel J. Davey,et al.  A Comparison of Detection Performance for Several Track-before-Detect Algorithms , 2008, 2008 11th International Conference on Information Fusion.

[16]  Melanie Bocquel Random finite sets in multi-target tracking - efficient sequential MCMC implementation , 2013 .

[17]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  D. J. Salmond,et al.  A particle filter for track-before-detect , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[19]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[20]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[21]  Ba-Ngu Vo,et al.  Sensor control for multi-object state-space estimation using random finite sets , 2010, Autom..

[22]  Danilo Orlando,et al.  Track-Before-Detect Strategies for STAP Radars , 2010, IEEE Transactions on Signal Processing.

[23]  Josiane Zerubia,et al.  Joint Detection and Tracking of Moving Objects Using Spatio-temporal Marked Point Processes , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[24]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[25]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Masahito Yamada,et al.  Structural Time Series Models and the Kalman Filter , 1989 .

[27]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[28]  Y. Bar-Shalom,et al.  Multitarget Tracking , 2015 .

[29]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[30]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[31]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[32]  Simon J. Godsill,et al.  Acoustic Source Localization and Tracking Using Track Before Detect , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[33]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[34]  Mark Coates,et al.  Hybrid multi-Bernoulli CPHD filter for superpositional sensors , 2014, Defense + Security Symposium.

[35]  S. Buzzi,et al.  Track-before-detect procedures for early detection of moving target from airborne radars , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Ronald P. S. Mahler,et al.  CPHD filters for superpositional sensors , 2009, Optical Engineering + Applications.

[37]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[38]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[39]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  S. M. Tonissen,et al.  Maximum likelihood track-before-detect with fluctuating target amplitude , 1998 .

[41]  Robin J. Evans,et al.  A Particle Marginal Metropolis-Hastings Multi-Target Tracker , 2014, IEEE Transactions on Signal Processing.

[42]  J. Meditch A survey of data smoothing for linear and nonlinear dynamic systems , 1973 .

[43]  Ieee Staff,et al.  2018 International Conference on Control, Automation and Information Sciences (ICCAIS) , 2018, 2018 International Conference on Control, Automation and Information Sciences (ICCAIS).

[44]  Ba-Ngu Vo,et al.  Visual Tracking in Background Subtracted Image Sequences via Multi-Bernoulli Filtering , 2013, IEEE Transactions on Signal Processing.

[45]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[46]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[47]  Du Yong Kim,et al.  A Particle Multi-Target Tracker for Superpositional Measurements Using Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.