Efficacy of Recombinant Human Manganese Superoxide Dismutase Compared to Allopurinol in Protection of Ischemic Skeletal Muscle Against “No-Reflow”

p

[1]  S. Oredsson,et al.  Experimental evaluation of oxygen free radical scavengers in the prevention of reperfusion injury in skeletal muscle. , 1994, The European journal of surgery = Acta chirurgica.

[2]  L. Schwartz,et al.  Characterization of calcium channel blocker induced smooth muscle relaxation using a model of isolated corpus cavernosum. , 1993, The Journal of urology.

[3]  C. Smith,et al.  CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon. , 1993, The American journal of physiology.

[4]  A. Romaschin,et al.  Prolonged adenine nucleotide resynthesis and reperfusion injury in postischemic skeletal muscle. , 1992, The American journal of physiology.

[5]  R. London,et al.  Amiloride delays the ischemia-induced rise in cytosolic free calcium. , 1991, Circulation research.

[6]  M. Gregory,et al.  Alterations in the morphology of skeletal myofibres after 90 minutes of ischaemia and 3 hours of reperfusion. , 1991, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[7]  A. Seaber,et al.  The effect of acute denervation on the microcirculation of skeletal muscle: Rat cremaster model , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[8]  S. Oredsson,et al.  Allopurinol--a free radical scavenger--reduces reperfusion injury in skeletal muscle. , 1991, European journal of vascular surgery.

[9]  R. Rees,et al.  Xanthine oxidase: its role in the no-reflow phenomenon. , 1990, Surgery.

[10]  B. Perler,et al.  Inhibition of the compartment syndrome by the ablation of free radical-mediated reperfusion injury. , 1990, Surgery.

[11]  J. Cronenwett,et al.  The effect of ischemia-reperfusion derived oxygen free radicals on skeletal muscle calcium metabolism. , 1989, Microcirculation, endothelium, and lymphatics.

[12]  R. Korthuis,et al.  Free radical defense mechanisms and neutrophil infiltration in postischemic skeletal muscle. , 1989, The American journal of physiology.

[13]  S. Weiss Tissue destruction by neutrophils. , 1989, The New England journal of medicine.

[14]  J. C. Kerr,et al.  The effects of oxygen free radical scavengers on skeletal muscle ischemia and reperfusion injury. , 1987, Current surgery.

[15]  R. Korthuis,et al.  The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. , 1985, Circulation research.

[16]  R. Mahnensmith,et al.  The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. , 1985, Circulation research.

[17]  J. L. Swain,et al.  Accelerated repletion of ATP and GTP pools in postischemic canine myocardium using a precursor of purine de novo synthesis. , 1982, Circulation research.

[18]  J. McCord,et al.  Superoxide radicals in feline intestinal ischemia. , 1981, Gastroenterology.

[19]  R. Jennings,et al.  Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. , 1981, Journal of molecular and cellular cardiology.

[20]  J. May,et al.  THE NO‐REFLOW PHENOMENON IN EXPERIMENTAL FREE FLAPS , 1978, Plastic and reconstructive surgery.

[21]  W. Gevers Generation of protons by metabolic processes in heart cells. , 1977, Journal of molecular and cellular cardiology.

[22]  R. Jennings,et al.  Ischemic tissue injury. , 1975, The American journal of pathology.

[23]  A. Leaf Cell Swelling: A Factor in Ischemic Tissue Injury , 1973, Circulation.

[24]  R. Dewall,et al.  Effect of allopurinol in renal ischemia. , 1972, Surgery.

[25]  D. K. Hill Resting tension and the form of the twitch of rat skeletal muscle at low temperature , 1972, The Journal of physiology.

[26]  I. Fridovich,et al.  A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. , 1970, The Journal of biological chemistry.

[27]  P. Rack,et al.  The effects of length and stimulus rate on tension in the isometric cat soleus muscle , 1969, The Journal of physiology.

[28]  F. Stirpe,et al.  The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). , 1969, The Journal of biological chemistry.

[29]  M. Kowada,et al.  Cerebral ischemia. II. The no-reflow phenomenon. , 1968, The American journal of pathology.

[30]  R. Jennings,et al.  Lethal Reperfusion Injury: Fact or Fancy? , 1992 .

[31]  R. Russell,et al.  [Tissue protection by elimination of oxygen free radicals in the post-ischemic reperfusion phase]. , 1990, Handchirurgie, Mikrochirurgie, plastische Chirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse : Organ der V....

[32]  A. Seaber,et al.  Intravascular thrombosis in skeletal muscle microcirculation after ischemia , 1989, Microsurgery.

[33]  T. Lindsay,et al.  Salvage of skeletal muscle with free radical scavengers. , 1987, Journal of vascular surgery.

[34]  I. Fridovich Superoxide radical: an endogenous toxicant. , 1983, Annual review of pharmacology and toxicology.

[35]  S. Hamilton,et al.  Ischemic injury in the cat small intestine: role of superoxide radicals. , 1982, Gastroenterology.

[36]  G. H. Clowes,et al.  The effect of prolonged ischemia on high energy phosphate metabolism in skeletal muscle. , 1978, Surgery, gynecology & obstetrics.

[37]  R. Taylor,et al.  Fast and slow skeletal muscles: simultaneous in vitro study. , 1976, Archives of physical medicine and rehabilitation.