Intra-daily Volume Modeling and Prediction for

The explosion of algorithmic trading has been one the most recent prominent trends in the financial industry. Algorithmic trading consists of automated trading strategies that attempt to minimize transaction costs by optimally placing transactions orders. The key ingredient of many of these strategies are intra-daily volume predictions. This work proposes a dynamic model for intra-daily volume forecasting that captures salient features of the series such as intra-daily periodicity and volume asymmetry. Results show that the proposed methodology is able to significantly outperform common volume forecasting methods and delivers significantly more precise predictions in a VWAP tracking trading exercise.

[1]  A. Ronald Gallant,et al.  The Fourier Flexible Form , 1984 .

[2]  T. Andersen Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility , 1996 .

[3]  R. Engle New Frontiers for Arch Models , 2002 .

[4]  Robert Almgren,et al.  Optimal execution of portfolio trans-actions , 2000 .

[5]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[6]  J. Wooldridge Estimation and inference for dependent processes , 1994 .

[7]  C. Brownlees,et al.  Shrinkage Estimation of Semiparametric Multiplicative Error Models , 2008 .

[8]  D. Bertsimas,et al.  Optimal control of execution costs , 1998 .

[9]  Christian T. Brownlees,et al.  Financial Econometric Analysis at Ultra-High Frequency: Data Handling Concerns , 2006, Comput. Stat. Data Anal..

[10]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[11]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[12]  R. Engle,et al.  Time and the Price Impact of a Trade , 1999 .

[13]  Fabrizio Cipollini,et al.  Semiparametric Vector MEM , 2008 .

[14]  C. Gouriéroux,et al.  Intra-day market activity , 1999 .

[15]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[16]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[17]  Stephen L Taylor,et al.  A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility , 2002 .

[18]  Serge Darolles,et al.  Improving VWAP. Strategies: A Dynamical Volume Approach , 2006 .

[19]  Daniel B. Nelson,et al.  Inequality Constraints in the Univariate GARCH Model , 1992 .

[20]  W. Härdle,et al.  Modelling and Forecasting Liquidity Supply Using Semiparametric Factor Dynamics , 2009 .

[21]  Eric Ghysels,et al.  Periodic Autoregressive Conditional Heteroskedasticity , 1996 .

[22]  J. Zakoian,et al.  Threshold Arch Models and Asymmetries in Volatility , 1993 .

[23]  The economic and statistical significance of spread forecasts: Evidence from the London Stock Exchange , 2002 .

[24]  Jacob A. Bikker,et al.  Forecasting market impact costs and identifying expensive trades , 2006 .

[25]  Halbert White,et al.  Approximate Nonlinear Forecasting Methods , 2006 .

[26]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[27]  Jonathan M. Karpoff The Relation between Price Changes and Trading Volume: A Survey , 1987, Journal of Financial and Quantitative Analysis.

[28]  D. Logue,et al.  The Total Cost of Transactions on the NYSE , 1988 .

[29]  Nikolaus Hautsch,et al.  Capturing Common Components in High-Frequency Financial Time Series: A Multivariate Stochastic Multiplicative Error Model , 2008 .