Deep convolutional network for animal sound classification and source attribution using dual audio recordings.
暂无分享,去创建一个
Tuomas Oikarinen | Karthik Srinivasan | Guoping Feng | Rogier Landman | Tuomas P. Oikarinen | Olivia Meisner | Julia B Hyman | Shivangi Parmar | Adrian Fanucci-Kiss | Robert Desimone | R. Desimone | R. Landman | K. Srinivasan | S. Parmar | J. Hyman | A. Fanucci-Kiss | O. Meisner | G. Feng
[1] E. Schegloff,et al. A simplest systematics for the organization of turn-taking for conversation , 2015 .
[2] Cory T. Miller,et al. The communicative content of the common marmoset phee call during antiphonal calling , 2010, American journal of primatology.
[3] Geoffrey E. Hinton,et al. Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.
[4] Sidarta Ribeiro,et al. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations , 2016, PloS one.
[5] Y. Yovel,et al. Everyday bat vocalizations contain information about emitter, addressee, context, and behavior , 2016, Scientific Reports.
[6] François Pachet,et al. Finding good acoustic features for parrot vocalizations: the feature generation approach. , 2011, The Journal of the Acoustical Society of America.
[7] Hiroshi Riquimaroux,et al. Classification of vocalizations in the Mongolian gerbil, Meriones unguiculatus. , 2012, The Journal of the Acoustical Society of America.
[8] David A. Leopold,et al. Marmosets: A Neuroscientific Model of Human Social Behavior , 2016, Neuron.
[9] Christophe Boesch,et al. Acoustic structure and variation in mountain and western gorilla close calls: a syntactic approach , 2014 .
[10] Francisco Torreira,et al. Timing in turn-taking and its implications for processing models of language , 2015, Front. Psychol..
[11] Lars Lundberg,et al. Classifying environmental sounds using image recognition networks , 2017, KES.
[12] Sergey Ioffe,et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.
[13] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[14] J. Soltis,et al. The vocal repertoire of the Key Largo woodrat (Neotoma floridana smalli). , 2012, The Journal of the Acoustical Society of America.
[15] G. Epple,et al. Comparative studies on vocalization in marmoset monkeys (Hapalidae). , 1968, Folia primatologica; international journal of primatology.
[16] Zhen-Hua Ling,et al. Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. , 2018, The Journal of the Acoustical Society of America.
[17] G. Bourne,et al. Quantitative acoustic analysis of the vocal repertoire of the golden rocket frog (Anomaloglossus beebei). , 2012, The Journal of the Acoustical Society of America.
[18] Cory T. Miller,et al. Marmoset vocal communication: Behavior and neurobiology , 2017, Developmental neurobiology.
[19] R. Desimone,et al. Opportunities and challenges in modeling human brain disorders in transgenic primates , 2022 .
[20] James L. Fuller. The vocal repertoire of adult male blue monkeys (Cercopithecus mitis stulmanni): A quantitative analysis of acoustic structure , 2014, American journal of primatology.
[21] Chia-Jung Chang,et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). , 2015, The Journal of the Acoustical Society of America.
[22] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[23] Geoffrey E. Hinton,et al. Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[24] B. Bezerra,et al. Structure and Usage of the Vocal Repertoire of Callithrix jacchus , 2008, International Journal of Primatology.
[25] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).