Finite element analysis of vibrating micro-beams and -plates using a three-dimensional micropolar element

Abstract The micropolar theory (MPT), through taking the rotational degrees of freedom of material particles into account, is a suitable elasticity theory for the mechanical analysis of microstructures. In this article, the vibration behavior of microscale beams and plates is studied based on MPT. To this end, first, a three-dimensional (3D) formulation is developed for the micropolar continua which can be readily used in the finite element analyses. Then, a non-classical 3D element is introduced to investigate the free vibration characteristics of micropolar beams and plates. The microstructure effect on the frequencies of microbeams and microplates under different kinds of boundary conditions is illustrated. Also, the results of MPT are compared with those of classical theory and it is indicated that there is a considerable difference between their predictions at small scales.

[1]  Roderic S. Lakes,et al.  Experimental microelasticity of two porous solids , 1986 .

[2]  Gary L. Anderson On forced vibrations in the linear theory of micropolar elasticity , 1973 .

[3]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[4]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[5]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[6]  Patrizio Neff,et al.  Existence, Uniqueness and Stability in Linear Cosserat Elasticity for Weakest Curvature Conditions , 2010 .

[7]  R. Lakes,et al.  Experimental study of micropolar and couple stress elasticity in compact bone in bending. , 1982, Journal of biomechanics.

[8]  Peter Wriggers,et al.  A finite element model for contact analysis of multiple Cosserat bodies , 2005 .

[9]  A. H. Sargsyan,et al.  Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations , 2014 .

[10]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[11]  Hussein M. Zbib,et al.  Strain gradients and continuum modeling of size effect in metal matrix composites , 1997 .

[12]  Reza Ansari,et al.  Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory , 2015 .

[13]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[14]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[15]  Davide Bigoni,et al.  Analytical Derivation of Cosserat Moduli via Homogenization of Heterogeneous Elastic Materials , 2007 .

[16]  On the bending of micropolar viscoelastic plates , 2006 .

[17]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[18]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[19]  Francesco Ubertini,et al.  Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey , 2015 .

[20]  F. F. Mahmoud,et al.  Finite element analysis of functionally graded nano-scale films , 2013 .

[21]  A. Norouzzadeh,et al.  Micromorphic prism element , 2017 .

[22]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[23]  Reza Ansari,et al.  Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis , 2016 .

[24]  H. Zbib,et al.  Damage and size effect during superplastic deformation , 2002 .

[25]  R. Lakes,et al.  Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent. , 1986, Journal of biomechanics.

[26]  Victor A. Eremeyev,et al.  On effective properties of materials at the nano- and microscales considering surface effects , 2016 .

[27]  W. Guenther,et al.  Zur Statik und Kinematik des Cosseratschen Kontinuums , 1958 .

[28]  Li Li,et al.  Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory , 2016 .

[29]  W. Nowacki Theory of Micropolar Elasticity , 1986 .

[30]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[31]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[32]  A. Norouzzadeh,et al.  Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach , 2017 .

[33]  A. Cemal Eringen,et al.  Theory of Micropolar Elasticity , 1999 .

[34]  Y. Beni,et al.  Cylindrical thin-shell model based on modified strain gradient theory , 2014 .

[35]  J. Reddy,et al.  A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation , 2015 .

[36]  S. Hosseini-Hashemi,et al.  Size dependent vibro-buckling of rotating beam based on modified couple stress theory , 2016 .

[37]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[38]  A. Norouzzadeh,et al.  Micromorphic first-order shear deformable plate element , 2016 .

[39]  R. Ansari,et al.  Small-scale Timoshenko beam element , 2015 .

[40]  Youping Chen,et al.  Determining material constants in micromorphic theory through phonon dispersion relations , 2003 .

[41]  A. Eringen,et al.  THEORY OF MICROPOLAR FLUIDS , 1966 .

[42]  C. Lim,et al.  On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported , 2007 .

[43]  Luca Placidi,et al.  The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics , 2013, 1308.3762.

[44]  James D. Lee,et al.  Generalized Micromorphic solids and fluids , 2011 .

[45]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[46]  Elena Pasternak,et al.  Generalised homogenisation procedures for granular materials , 2005 .

[47]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[48]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[49]  A. Cental Eringen,et al.  Part I – Polar Field Theories , 1976 .

[50]  A. Norouzzadeh,et al.  Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity , 2017 .

[51]  P.J.G. Schreurs,et al.  Homogenization of heterogeneous polymers , 1999 .

[52]  A. Norouzzadeh,et al.  A Nonclassical Finite Element Approach for the Nonlinear Analysis of Micropolar Plates , 2017 .

[53]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[54]  J. E. Goldberg,et al.  Finite element approach to bending of micropolar plates , 1974 .

[55]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[56]  Victor A. Eremeyev,et al.  On natural strain measures of the non-linear micropolar continuum , 2009 .

[57]  S. Shaw High frequency vibration of a rectangular micropolar beam: A dynamical analysis , 2016 .

[58]  Xuekun Sun,et al.  2-D nano-scale finite element analysis of a polymer field , 2003 .

[59]  L. Steinberg,et al.  Numerical modeling of bending of micropolar plates , 2013 .

[60]  S. Forest,et al.  Cosserat overall modeling of heterogeneous materials , 1998 .

[61]  S. H. Sargsyan,et al.  Mathematical model of the dynamics of micropolar elastic thin beams. Free and forced vibrations , 2016 .

[62]  D. Ieşan On the linear theory of micropolar elasticity , 1969 .

[63]  E. Felder,et al.  Experimental analysis and finite element modelling of nano-scratch test applied on 40–120 nm SiCN thin films deposited on Cu/Si substrate , 2010 .

[64]  S. Marasso,et al.  A finite element model for the frequency spectrum estimation of a resonating microplate in a microfluidic chamber , 2013 .