A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems
暂无分享,去创建一个
[1] Patrick D. Quillen,et al. GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM , 2005 .
[2] Richard R. Underwood. An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems , 1975 .
[3] A. Knyazev. A Preconditioned Conjugate Gradient Method for Eigenvalue Problems and its Implementation in a Subspace , 1991 .
[4] Lothar Reichel,et al. IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems , 2002, SIAM J. Sci. Comput..
[5] G. Golub,et al. Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner–outer iterations , 2000 .
[6] Qiang Ye,et al. Algorithm 845: EIGIFP: a MATLAB program for solving large symmetric generalized eigenvalue problems , 2005, TOMS.
[7] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[8] Gene H. Golub,et al. An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..
[9] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[10] Yvan Notay,et al. Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..
[11] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[12] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[13] Andreas Stathopoulos,et al. Locking issues for finding a large number of eigenvectors of Hermitian matrices , 2006 .
[14] Y. Saad,et al. Numerical Methods for Large Eigenvalue Problems , 2011 .
[15] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[16] J. Cullum,et al. Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory , 1984 .
[17] Qiang Ye,et al. An adaptive block Lanczos algorithm , 1996, Numerical Algorithms.
[18] U. Hetmaniuk,et al. A comparison of eigensolvers for large‐scale 3D modal analysis using AMG‐preconditioned iterative methods , 2005 .
[19] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[20] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[21] G. Golub,et al. Inexact Inverse Iteration for Generalized Eigenvalue Problems , 2000 .
[22] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[23] A. Knyazev,et al. A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .