A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems

The inverse-free preconditioned Krylov subspace method of Golub and Ye [G.H. Golub, Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comp. 24 (2002) 312-334] is an efficient algorithm for computing a few extreme eigenvalues of the symmetric generalized eigenvalue problem. In this paper, we first present an analysis of the preconditioning strategy based on incomplete factorizations. We then extend the method by developing a block generalization for computing multiple or severely clustered eigenvalues and develop a robust black-box implementation. Numerical examples are given to illustrate the analysis and the efficiency of the block algorithm.

[1]  Patrick D. Quillen,et al.  GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM , 2005 .

[2]  Richard R. Underwood An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems , 1975 .

[3]  A. Knyazev A Preconditioned Conjugate Gradient Method for Eigenvalue Problems and its Implementation in a Subspace , 1991 .

[4]  Lothar Reichel,et al.  IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems , 2002, SIAM J. Sci. Comput..

[5]  G. Golub,et al.  Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner–outer iterations , 2000 .

[6]  Qiang Ye,et al.  Algorithm 845: EIGIFP: a MATLAB program for solving large symmetric generalized eigenvalue problems , 2005, TOMS.

[7]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[8]  Gene H. Golub,et al.  An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..

[9]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[10]  Yvan Notay,et al.  Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..

[11]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[12]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[13]  Andreas Stathopoulos,et al.  Locking issues for finding a large number of eigenvectors of Hermitian matrices , 2006 .

[14]  Y. Saad,et al.  Numerical Methods for Large Eigenvalue Problems , 2011 .

[15]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[16]  J. Cullum,et al.  Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory , 1984 .

[17]  Qiang Ye,et al.  An adaptive block Lanczos algorithm , 1996, Numerical Algorithms.

[18]  U. Hetmaniuk,et al.  A comparison of eigensolvers for large‐scale 3D modal analysis using AMG‐preconditioned iterative methods , 2005 .

[19]  Gene H. Golub,et al.  The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.

[20]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[21]  G. Golub,et al.  Inexact Inverse Iteration for Generalized Eigenvalue Problems , 2000 .

[22]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[23]  A. Knyazev,et al.  A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .