Comparison of Neovascular Lesion Area Measurements From Different Swept-Source OCT Angiographic Scan Patterns in Age-Related Macular Degeneration

Purpose We compared area measurements for the same neovascular lesions imaged using swept source optical coherence tomography angiography (SS-OCTA) and enlarging scan patterns. Methods Patients with neovascular age-related macular degeneration were imaged using a 100-kHz SS-OCTA instrument (PLEX Elite 9000). The scanning protocols included the 3 × 3, 6 × 6, 9 × 9, and 12 × 12 mm fields of view. Two groups were studied. Group 1 included small lesions contained within the 3 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 3 mm scan, and Group 2 included larger lesions that were fully contained within the 6 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 6 mm scan. Results A total of 30 eyes of 26 patients were enrolled in Group 1 and 30 eyes of 25 patients were enrolled in Group 2. In Group 1, the automated mean lesion area measurements were 1.11 (SD = 0.78), 1.14 (SD = 0.80), and 1.27 (SD = 0.82) mm2 for the 3 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 3, 6 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 6, and 12 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 12 mm scans, respectively (ANOVA P < 0.001; post hoc comparisons, P = 0.184, 3 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 3 vs. 6 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 6 mm; P < 0.001 for the other two pairs). In Group 2, the automated mean lesion area measurements were 5.43 (SD = 2.56), 5.53 (SD = 2.48), and 5.49 (SD = 2.65) mm2 for the 6 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}\( \times \)\end{document} 6, 9 \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bit

[1]  Ruikang K. Wang,et al.  Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms , 2017, Investigative ophthalmology & visual science.

[2]  Ruikang K. Wang,et al.  Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. , 2017, Ophthalmology. Retina.

[3]  Sophie Kubach,et al.  Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization , 2017, Investigative ophthalmology & visual science.

[4]  N. Waheed,et al.  CLINICAL TRIAL ENDPOINTS FOR OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. , 2016, Retina.

[5]  M. Varano,et al.  Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti‐VEGF treatment , 2016, Acta ophthalmologica.

[6]  Glenn J Jaffe,et al.  Five-Year Outcomes with Anti-Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration: The Comparison of Age-Related Macular Degeneration Treatments Trials. , 2016, Ophthalmology.

[7]  Alexandra Miere,et al.  Type 1 Choroidal Neovascularization Lesion Size: Indocyanine Green Angiography Versus Optical Coherence Tomography Angiography. , 2016, Investigative ophthalmology & visual science.

[8]  Ruikang K. Wang,et al.  Original articleOptical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration , 2016 .

[9]  Alexandra Miere,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN EARLY TYPE 3 NEOVASCULARIZATION , 2015, Retina.

[10]  K Bailey Freund,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF TYPE 3 NEOVASCULARIZATION SECONDARY TO AGE-RELATED MACULAR DEGENERATION , 2015, Retina.

[11]  M. Rispoli,et al.  LONGITUDINAL OPTICAL COHERENCE TOMOGRAPHY–ANGIOGRAPHY STUDY OF TYPE 2 NAIVE CHOROIDAL NEOVASCULARIZATION EARLY RESPONSE AFTER TREATMENT , 2015, Retina.

[12]  David Huang,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF TIME COURSE OF CHOROIDAL NEOVASCULARIZATION IN RESPONSE TO ANTI-ANGIOGENIC TREATMENT , 2015, Retina.

[13]  Ruikang K. Wang,et al.  Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. , 2015, Biomedical optics express.

[14]  Ruikang K. Wang,et al.  Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. , 2014, Ophthalmic surgery, lasers & imaging retina.

[15]  Martin F. Kraus,et al.  Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. , 2014, Ophthalmology.

[16]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[17]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[18]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[19]  E. Souied,et al.  Optical Coherence Tomography Angiography of Type 2 Neovascularization in Age-Related Macular Degeneration. , 2016, Developments in ophthalmology.

[20]  D. Sarraf,et al.  Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration. , 2016, Developments in ophthalmology.

[21]  Philip J Rosenfeld,et al.  A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. , 2009, American journal of ophthalmology.

[22]  William J Feuer,et al.  An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. , 2007, American journal of ophthalmology.