The Icosian Code and the $E_8$ Lattice: A New $4\,\times\,4$ Space–Time Code With Nonvanishing Determinant
暂无分享,去创建一个
[1] Alexander Vardy,et al. Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.
[2] Emanuele Viterbo,et al. The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[3] A. Robert Calderbank,et al. Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.
[4] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[5] Björn E. Ottersten,et al. On the complexity of sphere decoding in digital communications , 2005, IEEE Transactions on Signal Processing.
[6] Ari Hottinen,et al. Minimal non-orthogonality rate 1 space-time block code for 3+ Tx antennas , 2000, 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. ISSTA 2000. Proceedings (Cat. No.00TH8536).
[7] Karim Abed-Meraim,et al. Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.
[8] Frédérique E. Oggier,et al. Algebraic Number Theory and Code Design for Rayleigh Fading Channels , 2004, Found. Trends Commun. Inf. Theory.
[9] Emanuele Viterbo,et al. A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.
[10] Constantinos B. Papadias,et al. Improved quasi-orthogonal codes through constellation rotation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[11] Hamid Jafarkhani. A quasi-orthogonal space-time block code , 2001, IEEE Trans. Commun..
[12] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[13] F. Oggier,et al. Perfect Space Time Block Codes , 2006 .
[14] Babak Hassibi,et al. On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.
[15] U. Fincke,et al. Improved methods for calculating vectors of short length in a lattice , 1985 .
[16] Frédérique E. Oggier,et al. Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.
[17] Siavash M. Alamouti,et al. A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..
[18] Giuseppe Caire,et al. On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.
[19] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[20] Suhas N. Diggavi,et al. Construction and analysis of a new quaternionic space-time code for 4 transmit antennas , 2005, Commun. Inf. Syst..
[21] A. Robert Calderbank,et al. Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.