Rapid imaging of calcite crystal growth using atomic force microscopy with small cantilevers

Using a 26 μm cantilever with a resonant frequency of 100 kHz in water, we were able to obtain sequential images of calcite crystal steps growing from a screw dislocation. The small cantilever permitted acquisition of 250 nm images at scan rates of 104 lines/s (1.2 s/image). From this sequence we directly measured critical step lengths (the length of the shortest step that can advance) of 6–21 nm. These values provided a rough estimate of (0.25±0.13 J/m2) for the step energy per unit length per unit step height on the (104) face of calcite.

[1]  T. Thundat,et al.  CRITICAL NUCLEI SHAPES IN THE STRESS-DRIVEN 2D-TO-3D TRANSITION , 1997 .

[2]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[3]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[4]  Abdullah Atalar,et al.  High‐speed atomic force microscopy using an integrated actuator and optical lever detection , 1996 .

[5]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[6]  Hideo Yoshihara,et al.  Silicon Nitride Single-Layer X-Ray Mask , 1981 .

[7]  P. Hansma,et al.  Step dynamics and spiral growth on calcite , 1993 .

[8]  Deron A. Walters,et al.  Atomic force microscope for small cantilevers , 1997, Photonics West.

[9]  Daniel Rugar,et al.  TIP-BASED DATA STORAGE USING MICROMECHANICAL CANTILEVERS , 1995 .

[10]  P K Hansma,et al.  Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study. , 1997, Biophysical journal.

[11]  Deron A. Walters,et al.  Atomic force microscopy using small cantilevers , 1997, Photonics West.

[12]  E. Bamberg,et al.  Scan speed limit in atomic force microscopy , 1993 .

[13]  S. C. Parker,et al.  Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces , 1997 .

[14]  J. D. Lee,et al.  The effect of dislocation cores on growth hillock vicinality and normal growth rates of KDP ?1 0 1? surfaces , 1997 .

[15]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  Yukio Saito,et al.  Statistical physics of crystal growth , 1996 .

[17]  L. Fan,et al.  6-MHz 2-N/m piezoresistive atomic-force microscope cantilevers with INCISIVE tips , 1997 .

[18]  Paul K. Hansma,et al.  Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .

[19]  P. Hansma,et al.  Atomic-scale imaging of calcite growth and dissolution in real time , 1992 .

[20]  Paul K. Hansma,et al.  Composite spiral growth kinetics of calcite revealed by AFM , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[21]  A. McPherson,et al.  Mechanisms of growth for protein and virus crystals , 1995, Nature Structural Biology.

[22]  Thomas Thundat,et al.  Transient response of tapping scanning force microscopy in liquids , 1996 .

[23]  Thomas Thundat,et al.  RESONANCE RESPONSE OF SCANNING FORCE MICROSCOPY CANTILEVERS , 1994 .

[24]  David Keller,et al.  Imaging steep, high structures by scanning force microscopy with electron beam deposited tips , 1992 .