Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles

High-index dielectric nanoparticles support leaky geometrical resonances in the visible spectral range with large interaction cross sections, and find applications in nanoscale optoelectronic devices and surface coatings. Coupling between such resonant nanoparticles in close proximity can give rise to enhanced directionality and confinement. Here, we combine dark-field (DF) scattering spectroscopy with cathodoluminescence (CL) imaging spectroscopy to study hybridization of resonant modes in coupled silicon nanoparticles and directly image the modal field profiles of these hybridized eigenmodes. The DF measurements show a strong influence of the gap size on the scattering spectrum as a result of hybridization. Using finite-element modeling we calculate the eigenmodes of the dimer and identify the hybridized eigenmodes in the scattering spectrum. CL imaging spectroscopy is used to directly map the modal field profiles of single particles and dimer structures with deep-subwavelength spatial resolution. Detailed comparison with eigenmode calculations shows that the measured modal field profiles correspond to the hybridized symmetric electric and antisymmetric magnetic bonding modes. We study dimers composed of large dielectric bars to explore the ability of CL imaging to map highly complex hybridized field profiles inside resonant nanostructures. Our results demonstrate the ability to characterize the complex resonant properties of coupled nanostructures, paving the way for more complex applications and devices based on resonant dielectric nanoparticles.

[1]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[2]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[3]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[4]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[5]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[6]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[7]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[8]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[9]  Peter Zijlstra,et al.  Laser threshold of Mie resonances. , 2006, Optics letters.

[10]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[11]  Sang Woo Han,et al.  Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. , 2009, Nano letters.

[12]  Ji Zhou,et al.  Mie resonance-based dielectric metamaterials , 2009 .

[13]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[14]  Mark L Brongersma,et al.  General properties of dielectric optical antennas. , 2009, Optics express.

[15]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[16]  Pengyu Fan,et al.  Resonant germanium nanoantenna photodetectors. , 2010, Nano letters.

[17]  A. Polman,et al.  Plasmonic whispering gallery cavities as optical nanoantennas. , 2011, Nano letters.

[18]  Zongfu Yu,et al.  Dielectric nanostructures for broadband light trapping in organic solar cells , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[19]  A. Polman,et al.  Angle-resolved cathodoluminescence spectroscopy , 2011, 1107.3632.

[20]  R. Osgood,et al.  Dielectric particle and void resonators for thin film solar cell textures. , 2011, Optics express.

[21]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[22]  A. Polman,et al.  Deep-subwavelength imaging of the modal dispersion of light. , 2012, Nature materials.

[23]  Charles M Lieber,et al.  Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. , 2012, Nano letters.

[24]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[25]  Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. , 2012, ACS nano.

[26]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[27]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[28]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[29]  J. Aizpurua,et al.  Dielectric antennas--a suitable platform for controlling magnetic dipolar emission. , 2012, Optics express.

[30]  Nader Engheta,et al.  Experimental verification of n = 0 structures for visible light. , 2013, Physical review letters.

[31]  J. Aizpurua,et al.  Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers , 2013 .

[32]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[33]  A. Polman,et al.  Designing dielectric resonators on substrates: combining magnetic and electric resonances. , 2013, Optics express.

[34]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[35]  General modal properties of optical resonances in subwavelength nonspherical dielectric structures. , 2013, Nano letters.

[36]  Albert Polman,et al.  Resonant modes of single silicon nanocavities excited by electron irradiation. , 2013, ACS nano.

[37]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[38]  Jeremy B. Wright,et al.  Optical magnetic mirrors without metals , 2014, 1403.1308.

[39]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[40]  A. Polman,et al.  Directional emission from a single plasmonic scatterer , 2014, Nature Communications.

[41]  A. Polman,et al.  Optical properties of single plasmonic holes probed with local electron beam excitation. , 2014, ACS nano.

[42]  Renhao Fan,et al.  Broadband optical scattering in coupled silicon nanocylinders , 2014 .

[43]  Benjamin J. M. Brenny,et al.  Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution , 2015 .

[44]  Boris Luk'yanchuk,et al.  Magnetic and electric hotspots with silicon nanodimers. , 2015, Nano letters.

[45]  J. Aizpurua,et al.  Electromagnetic Resonances of Silicon Nanoparticle Dimers in the Visible , 2015 .

[46]  Chengxin Wang,et al.  Directional Fano resonance in a silicon nanosphere dimer. , 2015, ACS nano.