A result on the first-passage time of an Ornstein–Uhlenbeck process

Consider the first time an Ornstein-Uhlenbeck process starting from zero crosses a constant positive threshold. Assuming that the asymptotic mean is above the threshold, conditions on the asymptotic variance relative to the distance between the threshold and the asymptotic mean are given that ensures the finiteness of the positive Laplace transforms.

[1]  J. L. Pedersen,et al.  Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .

[2]  V. Linetsky Computing Hitting Time Densities for CIR and OU Diffusions: Applications to Mean-Reverting Models , 2004 .

[3]  Michael Sørensen,et al.  Estimating equations based on eigenfunctions for a discretely observed diffusion process , 1999 .

[4]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[5]  Susanne Ditlevsen,et al.  Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[7]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[8]  Tetsuya Shimokawa,et al.  A first-passage-time analysis of the periodically forced noisy leaky integrate-and-fire model , 2000, Biological Cybernetics.

[9]  Bulsara,et al.  Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Susanne Ditlevsen,et al.  Estimation of the input parameters in the Feller neuronal model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[12]  Henry C. Tuckwell,et al.  A spatial stochastic neuronal model with Ornstein–Uhlenbeck input current , 2002, Biological Cybernetics.

[13]  Laura Sacerdote,et al.  On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity , 1995, Biological Cybernetics.

[14]  O. Aalen,et al.  Survival Models Based on the Ornstein-Uhlenbeck Process , 2004, Lifetime data analysis.

[15]  W. R. Buckland,et al.  Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. , 1952 .

[16]  William Feller,et al.  Diffusion Processes in Genetics , 1951 .

[17]  Olivier Scaillet,et al.  Path dependent options on yields in the affine term structure model , 1998, Finance Stochastics.

[18]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[19]  L. Ricciardi,et al.  The Ornstein-Uhlenbeck process as a model for neuronal activity , 1979, Biological Cybernetics.