Eignets for function approximation on manifolds

Let $\XX$ be a compact, smooth, connected, Riemannian manifold without boundary, $G:\XX\times\XX\to \RR$ be a kernel. Analogous to a radial basis function network, an eignet is an expression of the form $\sum_{j=1}^M a_jG(\circ,y_j)$, where $a_j\in\RR$, $y_j\in\XX$, $1\le j\le M$. We describe a deterministic, universal algorithm for constructing an eignet for approximating functions in $L^p(\mu;\XX)$ for a general class of measures $\mu$ and kernels $G$. Our algorithm yields linear operators. Using the minimal separation amongst the centers $y_j$ as the cost of approximation, we give modulus of smoothness estimates for the degree of approximation by our eignets, and show by means of a converse theorem that these are the best possible for every \emph{individual function}. We also give estimates on the coefficients $a_j$ in terms of the norm of the eignet. Finally, we demonstrate that if any sequence of eignets satisfies the optimal estimates for the degree of approximation of a smooth function, measured in terms of the minimal separation, then the derivatives of the eignets also approximate the corresponding derivatives of the target function in an optimal manner.

[1]  Woula Themistoclakis,et al.  Polynomial approximation on the sphere using scattered data , 2008 .

[2]  S. Minakshisundaram,et al.  Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.

[3]  P. Heywood Trigonometric Series , 1968, Nature.

[4]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[5]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[6]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[7]  Hrushikesh Narhar Mhaskar,et al.  When is approximation by Gaussian networks necessarily a linear process? , 2004, Neural Networks.

[8]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[9]  Stefan Kunis,et al.  Efficient Reconstruction of Functions on the Sphere from Scattered Data , 2007 .

[10]  Hrushikesh Narhar Mhaskar,et al.  A Quadrature Formula for Diffusion Polynomials Corresponding to a Generalized Heat Kernel , 2010 .

[11]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[12]  D. Donoho,et al.  Multiscale Geometric Analysis for 3-D Catalogues , 2002 .

[13]  A. Grigor’yan Spectral Theory and Geometry: Estimates of heat kernels on Riemannian manifolds , 1999 .

[14]  Anthony J. Devaney,et al.  Local Paley?Wiener theorems for functions analytic on unit spheres , 2007 .

[15]  David L. Donoho,et al.  Image Manifolds which are Isometric to Euclidean Space , 2005, Journal of Mathematical Imaging and Vision.

[16]  Charles K. Chui,et al.  Special issue on diffusion maps and wavelets , 2006 .

[17]  M. Maggioni,et al.  Universal Local Parametrizations via Heat Kernels and Eigenfunctions of the Laplacian , 2007, 0709.1975.

[18]  Hrushikesh Narhar Mhaskar,et al.  Diffusion polynomial frames on metric measure spaces , 2008 .

[19]  Naoki Saito,et al.  Data Analysis and Representation on a General Domain using Eigenfunctions of Laplacian , 2008 .

[20]  Hrushikesh Narhar Mhaskar,et al.  Introduction to the theory of weighted polynomial approximation , 1997, Series in approximations and decompositions.

[21]  L. Hörmander,et al.  The spectral function of an elliptic operator , 1968 .

[22]  Steven B. Damelin,et al.  On Bounds for Diffusion, Discrepancy and Fill Distance Metrics , 2008 .

[23]  Hrushikesh Narhar Mhaskar,et al.  Polynomial Frames: A Fast Tour , 2004 .

[24]  Steven B. Damelin A walk through energy, discrepancy, numerical integration and group invariant measures on measurable subsets of euclidean space , 2008, Numerical Algorithms.

[25]  Y. Kordyukov,et al.  Lp-Theory of elliptic differential operators on manifolds of bounded geometry , 1991, Acta Applicandae Mathematicae.

[26]  Karim Ramdani,et al.  Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors , 2007 .

[27]  Quoc Thong Le Gia,et al.  Localized Linear Polynomial Operators and Quadrature Formulas on the Sphere , 2008, SIAM J. Numer. Anal..

[28]  Xu Bin,et al.  Derivatives of the Spectral Function and Sobolev Norms of Eigenfunctions on a Closed Riemannian Manifold , 2004 .

[29]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[30]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[31]  G. Alexits Approximation theory , 1983 .

[32]  Alexander Grigor'yan,et al.  Heat kernels and function theory on metric measure spaces , 2003 .

[33]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[34]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.