Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate.

[1]  P. Oomen,et al.  Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors. , 2012, Biosensors & bioelectronics.

[2]  K. Razeeb,et al.  Coaxial NiO/Ni nanowire arrays for high performance pseudocapacitor applications , 2012 .

[3]  Zhi Yang,et al.  Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. , 2011, Biosensors & bioelectronics.

[4]  Mamun Jamal,et al.  Disposable biosensor based on immobilisation of glutamate oxidase on Pt nanoparticles modified Au nanowire array electrode. , 2010, Biosensors & bioelectronics.

[5]  Mojtaba Shamsipur,et al.  Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. , 2010, Bioelectrochemistry.

[6]  J. Gordon Testing the glutamate hypothesis of schizophrenia , 2010, Nature Neuroscience.

[7]  Guo-Li Shen,et al.  A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. , 2009, Biosensors & bioelectronics.

[8]  Jiaoqiang Zhang,et al.  Ni(II)–quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose , 2009 .

[9]  Shaojun Dong,et al.  Pt Nanoparticles Supported on TiO2 Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications , 2009 .

[10]  M. Jamal,et al.  A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT). , 2009, Biosensors & bioelectronics.

[11]  Qingyun Cai,et al.  An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite , 2009 .

[12]  Lixia Yang,et al.  An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. , 2008, Bioelectrochemistry.

[13]  B. Westerink,et al.  Microsensors for in vivo Measurement of Glutamate in Brain Tissue , 2008, Sensors.

[14]  G. Gerhardt,et al.  Second-by-Second Measures of l-Glutamate in the Prefrontal Cortex and Striatum of Freely Moving Mice , 2008, Journal of Pharmacology and Experimental Therapeutics.

[15]  Chien-Yuan Chen,et al.  Sequential measurement of aminotransferase activities by amperometric biosensors. , 2007, Biosensors & bioelectronics.

[16]  Tomoyuki Yasukawa,et al.  Fabrication of miniature Clark oxygen sensor integrated with microstructure , 2005 .

[17]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[18]  Mi-Sook Won,et al.  Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements. , 2005, Analytical chemistry.

[19]  B. Westerink,et al.  Improving the reproducibility of hydrogel-coated glutamate microsensors by using an automated dipcoater , 2004, Journal of Neuroscience Methods.

[20]  Seung-Cheol Chang,et al.  Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. , 2004, Biosensors & bioelectronics.

[21]  Reinhard Renneberg,et al.  Comparative study of hydrogel-immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples , 2000, Biotechnology Letters.

[22]  P. Francis Glutamatergic systems in Alzheimer's disease , 2003, International journal of geriatric psychiatry.

[23]  M. Suphantharika,et al.  Poly(vinylferrocene)–poly(ethylene glycol) glutamate oxidase electrode for determination of L-glutamate in commercial soy sauces , 2003 .

[24]  John R. Owen,et al.  Mesoporous nickel/nickel oxide-a nanoarchitectured electrode , 2002 .

[25]  J. Lott,et al.  Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. , 2000, Clinical chemistry.

[26]  P. Yarnold,et al.  Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. , 2000, The Journal of nutrition.

[27]  Mingjie Zhou,et al.  Microplate-based fluorometric methods for the enzymatic determination of l-glutamate: application in measuring l-glutamate in food samples , 1999 .

[28]  Yukari Sato,et al.  Rapid measurement of transaminase activities using an amperometric l-glutamate-sensing electrode based on a glutamate oxidase–polyion complex-bilayer membrane , 1998 .

[29]  E. Valero,et al.  A continuous spectrophotometric method based on enzymatic cycling for determining L-glutamate. , 1998, Analytical biochemistry.

[30]  P. Rada,et al.  Measurement of glutamine and glutamate by capillary electrophoresis and laser induced fluorescence detection in cerebrospinal fluid of meningitis sick children. , 1998, Clinical biochemistry.

[31]  A. Czerwiński,et al.  Behavior of a nickel electrode in the presence of carbon monoxide , 1998 .

[32]  H. Vaidyanathan,et al.  Effect of KOH concentration and anions on the performance of an NiH2 battery positive plate , 1996 .

[33]  M. D. de Villiers,et al.  Fluorimetric method of analysis for D-norpseudoephedrine hydrochloride, glycine and L-glutamic acid by reversed-phase high-performance liquid chromatography. , 1996, Journal of chromatography. A.

[34]  J. Cooper,et al.  Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films , 1995 .

[35]  Analysis for transaminases in serum with an amperometric glutamate electrode. , 1992, Clinical chemistry.

[36]  D. Pletcher,et al.  The Oxidation of Alcohols at a Nickel Anode in Alkaline t‐Butanol/Water Mixtures , 1977 .