Techniques for BOLD and blood volume weighted fMRI

Functional MRI (fMRI) generally employs gradient-echo EPI to measure BOLD signal changes that result from changes in tissue relaxation time T2* between activation and rest. As T2* strongly varies across the brain and BOLD contrast is maximal only where the echo time (TE) equals the local T2*, imaging at a single TE is a compromise in terms of overall sensitivity. Furthermore, the long echo train makes EPI very sensitive to main field inhomogeneities, causing strong image distortion. A method is presented that uses accelerated parallel imaging to reduce image artefacts and acquire images at multiple TEs following a single excitation, with no need to increase TR. Sensitivity gains from the broadened T2* coverage are optimised by pixel-wise weighted echo summation based on measured local T2*, or contrast-to-noise measurements. The method is evaluated both using an approach that allows differential BOLD CNR to be calculated without stimulation, and a Stroop experiment. Results at 3 T show that BOLD sensitivity improves by 11% or more in all brain regions, with larger gains in areas typically affected by strong susceptibility artefacts. Using parallel imaging markedly reduces image distortion. The method should hence find widespread application in functional brain imaging. Poser BA, Versluis MJ, Hoogduin JM, Norris DG. Magn Reson Med 55(6): 1227-1235; 2006

[1]  Christine Preibisch,et al.  Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI) , 2003, NeuroImage.

[2]  R. Buxton The Elusive Initial Dip , 2001, NeuroImage.

[3]  R A Jones,et al.  Origin of the signal undershoot in BOLD studies of the visual cortex , 1999, NMR in biomedicine.

[4]  Fuqiang Zhao,et al.  Cortical depth‐dependent gradient‐echo and spin‐echo BOLD fMRI at 9.4T , 2004, Magnetic resonance in medicine.

[5]  M. Zaitsev,et al.  High resolution single-shot EPI at 7T , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[6]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[7]  Risto A. Kauppinen,et al.  Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging , 1998, Nature Medicine.

[8]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[9]  J. C. Smith,et al.  Microenvironment of respiratory neurons in the in vitro brainstem‐spinal cord of neonatal rats. , 1993, The Journal of physiology.

[10]  J. Hutchison,et al.  NMR imaging: image recovery under magnetic fields with large non-uniformities. , 1978, Journal of physics E: Scientific instruments.

[11]  David G Norris,et al.  3D single‐shot VASO using a maxwell gradient compensated GRASE sequence , 2009, Magnetic resonance in medicine.

[12]  E. Haacke,et al.  Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime , 1994, Magnetic resonance in medicine.

[13]  W. Edelstein,et al.  Spin warp NMR imaging and applications to human whole-body imaging. , 1980, Physics in medicine and biology.

[14]  G. A. van Wingen,et al.  Biological determinants of amygdala functioning. , 2009 .

[15]  D. Sodickson,et al.  Ultimate intrinsic signal‐to‐noise ratio for parallel MRI: Electromagnetic field considerations , 2003, Magnetic resonance in medicine.

[16]  Glyn Johnson,et al.  Increased flexibility in GRASE imaging by k space‐banded phase encoding , 1995, Magnetic resonance in medicine.

[17]  Marc Korczykowski,et al.  Imaging mesial temporal lobe activation during scene encoding: Comparison of fMRI using BOLD and arterial spin labeling , 2007, Human brain mapping.

[18]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[19]  P Mansfield,et al.  Real-time echo-planar imaging by NMR. , 1984, British medical bulletin.

[20]  R Todd Constable,et al.  Image distortion correction in EPI: Comparison of field mapping with point spread function mapping , 2002, Magnetic resonance in medicine.

[21]  A. Song,et al.  Echo‐volume imaging , 1994, Magnetic resonance in medicine.

[22]  Christian Schwarzbauer,et al.  An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI , 2005, NeuroImage.

[23]  J Hennig,et al.  Motion correction of parametric fMRI data from multi‐slice single‐shot multi‐echo acquisitions , 2001, Magnetic resonance in medicine.

[24]  L. Wald,et al.  A 96-channel MRI System with 23- and 90-channel Phase Array Head Coils at 1.5 Tesla , 2005 .

[25]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[26]  R. S. Hinks,et al.  Stabilization of echo amplitudes in FSE sequences , 1993, Magnetic resonance in medicine.

[27]  C. Hooijmans,et al.  Impact of nutritional lipids and vascular factors in Alzheimer's Disease - a study of transgenic Alzheimer mice - , 2008 .

[28]  Nan-kuei Chen,et al.  Functional MRI with variable echo time acquisition , 2003, NeuroImage.

[29]  M. Bauer,et al.  Functional roles of rhythmic neuronal activity in the human visual and somatosensory system , 2008 .

[30]  J B Ra,et al.  Fast imaging using subencoding data sets from multiple detectors , 1993, Magnetic resonance in medicine.

[31]  M Zaitsev,et al.  Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo‐planar imaging distortion correction , 2004, Magnetic resonance in medicine.

[32]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[33]  Seong-Gi Kim,et al.  Arterial versus Total Blood Volume Changes during Neural Activity-Induced Cerebral Blood Flow Change: Implication for BOLD fMRI , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  L. Shah,et al.  Functional magnetic resonance imaging. , 2010, Seminars in roentgenology.

[36]  J. Voyvodic,et al.  High‐resolution echo‐planar fMRI of human visual cortex at 3.0 tesla , 1997, NMR in biomedicine.

[37]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[38]  Martin Blaimer,et al.  General formulation for quantitative G‐factor calculation in GRAPPA reconstructions , 2009, Magnetic resonance in medicine.

[39]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[40]  Daniel Gallichan,et al.  Measuring the Effects of Remifentanil on Cerebral Blood Flow and Arterial Arrival Time Using 3D Grase MRI with Pulsed Arterial Spin Labelling , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  S. Posse,et al.  Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging , 1999, Magnetic resonance in medicine.

[42]  J. Gore,et al.  Intravascular susceptibility contrast mechanisms in tissues , 1994, Magnetic resonance in medicine.

[43]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[44]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[45]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  D. V. Cramon,et al.  Investigating the post-stimulus undershoot of the BOLD signal—a simultaneous fMRI and fNIRS study , 2006, NeuroImage.

[47]  David A. Boas,et al.  Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy , 2003, NeuroImage.

[48]  J. Detre,et al.  Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats , 2001, Neuroscience Letters.

[49]  J M Hutchison,et al.  Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. , 1990, Magnetic resonance imaging.

[50]  P T Fox,et al.  Comparison of the experimental BOLD signal change in event‐related fMRI with the balloon model , 2001, NMR in biomedicine.

[51]  G. Glover,et al.  Spiral‐in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts , 2001, Magnetic resonance in medicine.

[52]  D. Kleinfeld,et al.  Is there a common origin to surround-inhibition as seen through electrical activity versus hemodynamic changes? Focus on "Duration-dependent response in SI to vibrotactile stimulation in squirrel monkey". , 2007, Journal of neurophysiology.

[53]  A M Wyrwicz,et al.  Correction for EPI distortions using multi‐echo gradient‐echo imaging , 1999, Magnetic resonance in medicine.

[54]  Kamil Ugurbil,et al.  Potential and feasibility of parallel MRI at high field , 2006, NMR in biomedicine.

[55]  D. Norris,et al.  On the application of ultra‐fast rare experiments , 1992, Magnetic resonance in medicine.

[56]  N. McLoughlin,et al.  Neurovascular coupling investigated with two‐dimensional optical imaging spectroscopy in rat whisker barrel cortex , 2005, The European journal of neuroscience.

[57]  J Hennig,et al.  Functional Imaging by I0‐ and T2* ‐parameter mapping using multi‐image EPI , 1998, Magnetic resonance in medicine.

[58]  D. Feinberg,et al.  GRASE (Gradient‐and Spin‐Echo) imaging: A novel fast MRI technique , 1991, Magnetic resonance in medicine.

[59]  D K Sodickson,et al.  SMASH imaging. , 1999, Magnetic resonance imaging clinics of North America.

[60]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[61]  J N Sanes,et al.  Real‐time quantification of T  2* changes using multiecho planar imaging and numerical methods , 2002, Magnetic resonance in medicine.

[62]  B. Hargreaves,et al.  Variable‐rate selective excitation for rapid MRI sequences , 2004, Magnetic resonance in medicine.

[63]  R. Kauppinen,et al.  Venous blood effects in spin‐echo fMRI of human brain , 1999, Magnetic resonance in medicine.

[64]  J. M. Schoffelen,et al.  Neuronal communication through coherence in the human motor system , 2007 .

[65]  K. Uğurbil,et al.  The Spatial Dependence of the Poststimulus Undershoot as Revealed by High-Resolution BOLD- and CBV-Weighted fMRI , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[66]  Xavier Golay,et al.  Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla , 2004, Magnetic resonance in medicine.

[67]  A. Villringer,et al.  Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. , 1994, Circulation research.

[68]  Giosuè Baggio,et al.  Semantics and the electrophysiology of meaning: Tense, aspect, event structure , 2004 .

[69]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[70]  D A Feinberg,et al.  GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique. , 1991, Radiology.

[71]  David G Norris,et al.  Exploring the post‐stimulus undershoot with spin‐echo fMRI: Implications for models of neurovascular response , 2011, Human brain mapping.

[72]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[73]  G. McCarthy,et al.  Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.

[75]  J. Hennig,et al.  Observation of a fast response in functional MR , 1994, Magnetic resonance in medicine.

[76]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[77]  Gaohong Wu,et al.  Theoretical noise model for oxygenation‐sensitive magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[78]  J. Reichenbach,et al.  Quantitative differentiation between BOLD models in fMRI , 2001, Magnetic resonance in medicine.

[79]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.

[80]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[81]  F. P. de Lange,et al.  Neural mechanisms of motor imagery , 2008 .

[82]  M. J. Grol Parieto-frontal circuitry in visuomotor control , 2008 .

[83]  B. Rosen,et al.  Evidence of a Cerebrovascular Postarteriole Windkessel with Delayed Compliance , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[84]  L Bolinger,et al.  The use of finite impulse response filters in pulse design , 1989, Magnetic resonance in medicine.

[85]  Peter C M van Zijl,et al.  Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi‐echo VASO fMRI at 1.5 and 3.0 T , 2005, Magnetic resonance in medicine.

[86]  A. Dale,et al.  Coupling of Total Hemoglobin Concentration, Oxygenation, and Neural Activity in Rat Somatosensory Cortex , 2003, Neuron.

[87]  Thomas T. Liu,et al.  Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients , 2004, NeuroImage.

[88]  Tao Jin,et al.  Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T , 2008, NeuroImage.

[89]  Bojana Stefanovic,et al.  Quantitative T2 in the occipital lobe: The role of the CPMG refocusing rate , 2003, Journal of magnetic resonance imaging : JMRI.

[90]  M. Hutchinson,et al.  Fast MRI data acquisition using multiple detectors , 1988, Magnetic resonance in medicine.

[91]  Zhou Shen,et al.  Single-shot T2* mapping with 3D compensation of local susceptibility gradients in multiple regions , 2003, NeuroImage.

[92]  J. Pekar,et al.  Sustained Poststimulus Elevation in Cerebral Oxygen Utilization after Vascular Recovery , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[93]  M A Fernández-Seara,et al.  Postprocessing technique to correct for background gradients in image‐based R*2 measurements , 2000, Magnetic resonance in medicine.

[94]  R V Mulkern,et al.  Magnetization transfer effects in multislice RARE sequences , 1992, Magnetic resonance in medicine.

[95]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[96]  J. Detre,et al.  Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T , 2005, Magnetic resonance in medicine.

[97]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[98]  J P Mugler,et al.  Improved three‐dimensional GRASE imaging with the SORT phase‐encoding strategy , 1999, Journal of magnetic resonance imaging : JMRI.

[99]  R. Turner,et al.  Cerebral Blood Volume: Measurement and Change , 2006 .

[100]  J. Pekar,et al.  Functional magnetic resonance imaging based on changes in vascular space occupancy , 2003, Magnetic resonance in medicine.

[101]  Yihong Yang,et al.  Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation , 2004, Magnetic resonance in medicine.

[102]  Thomas T. Liu,et al.  Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI , 2004, NeuroImage.

[103]  Seong-Gi Kim,et al.  Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI , 2001, Magnetic resonance in medicine.

[104]  Kevin Murphy,et al.  Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI , 2007, NeuroImage.

[105]  J. Lommertzen,et al.  Visuomotor Coupling at Different Levels of Complexity , 2004 .

[106]  R Bowtell,et al.  Theoretical optimization of multi-echo fMRI data acquisition , 2007, Physics in medicine and biology.

[107]  Frank Schneider,et al.  Dependence of amygdala activation on echo time: Results from olfactory fMRI experiments , 2006, NeuroImage.

[108]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[109]  B. Gaszner,et al.  Plastic responses to stress by the rodent urocortinergic Edinger-Westphal nucleus , 2008 .

[110]  Peter Kellman,et al.  Application of sensitivity‐encoded echo‐planar imaging for blood oxygen level‐dependent functional brain imaging † , 2002, Magnetic resonance in medicine.

[111]  Peter C M van Zijl,et al.  Theoretical and experimental investigation of the VASO contrast mechanism , 2006, Magnetic resonance in medicine.

[112]  A. Kleinschmidt,et al.  Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man , 1996, Magnetic resonance in medicine.

[113]  G H Glover,et al.  An image registration strategy for multi‐echo fMRI , 1999, Journal of magnetic resonance imaging : JMRI.

[114]  M. Bakker,et al.  Supraspinal control of walking : lessons from motor imagery , 2001 .

[115]  D G Norris,et al.  GRASE imaging at 3 Tesla with template interactive phase–encoding , 1998, Magnetic resonance in medicine.

[116]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[117]  Jeff H. Duyn,et al.  Reduction of Gradient Acoustic Noise in MRI Using SENSE-EPI , 2002, NeuroImage.

[118]  A. Mazaheri The influence of ongoing oscillatory brain activity on evoked responses and behaviour , 2004 .

[119]  Roel M. Willems,et al.  Neural reflections of meaning in gesture, language, and action , 2009 .

[120]  Harold Bekkering,et al.  Dynamics of cognitive control in task switching: looking beyond the switch cost , 2001 .

[121]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[122]  J. Carlson,et al.  An algorithm for NMR imaging reconstruction based on multiple RF receiver coils , 1987 .

[123]  Tao Jin,et al.  Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD , 2007, NeuroImage.

[124]  A. Grinvald,et al.  Compartment-Resolved Imaging of Activity-Dependent Dynamics of Cortical Blood Volume and Oximetry , 2005, The Journal of Neuroscience.

[125]  Elliot A Stein,et al.  Nonlinear responses of cerebral blood volume, blood flow and blood oxygenation signals during visual stimulation. , 2005, Magnetic resonance imaging.

[126]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[127]  W. G. Proctor,et al.  The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound , 1950 .

[128]  R W Cox,et al.  The effect of magnetization transfer on functional MRI signals , 1997, Magnetic resonance in medicine.

[129]  Jens Frahm,et al.  The post-stimulation undershoot in BOLD fMRI of human brain is not caused by elevated cerebral blood volume , 2008, NeuroImage.

[130]  Richard Bowtell,et al.  T2* measurements in human brain at 1.5, 3 and 7 T. , 2007, Magnetic resonance imaging.

[131]  Esther Aarts,et al.  Resisting temptation: the role of the anterior cingulate cortex in adjusting cognitive control , 2004 .

[132]  Weili Lin,et al.  In vivo validation of the bold mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow , 1995, Int. J. Imaging Syst. Technol..

[133]  Mark Jenkinson,et al.  Optimization of static field homogeneity in human brain using diamagnetic passive shims , 2002, Magnetic resonance in medicine.

[134]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[135]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[136]  Jinyuan Zhou,et al.  Magnetization transfer enhanced vascular‐space‐occupancy (MT‐VASO) functional MRI , 2009, Magnetic resonance in medicine.

[137]  Dae-Shik Kim,et al.  Origin of Negative Blood Oxygenation Level—Dependent fMRI Signals , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[138]  Toralf Mildner,et al.  Quantifying the intra‐ and extravascular contributions to spin‐echo fMRI at 3 T , 2004, Magnetic resonance in medicine.

[139]  A. Song,et al.  Diffusion weighted fMRI at 1.5 T , 1996, Magnetic resonance in medicine.

[140]  David G Norris,et al.  A dual echo approach to removing motion artefacts in fMRI time series , 2009, NMR in biomedicine.

[141]  G Johnson,et al.  A comparison of phase encoding ordering schemes in T2‐weighted GRASE imaging , 1996, Magnetic resonance in medicine.

[142]  Toralf Mildner,et al.  An Investigation of the Value of Spin-Echo-Based fMRI Using a Stroop Color–Word Matching Task and EPI at 3 T , 2002, NeuroImage.

[143]  Mark E Ladd,et al.  High-Field-Strength Magnetic Resonance: Potential and Limits , 2007, Topics in magnetic resonance imaging : TMRI.

[144]  D. Feinberg,et al.  Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements , 2005, Magnetic resonance in medicine.

[145]  S. Ljunggren A simple graphical representation of fourier-based imaging methods , 1983 .

[146]  Matthew Brett,et al.  An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images , 2003, NeuroImage.

[147]  Fuqiang Zhao,et al.  Increases in Oxygen Consumption without Cerebral Blood Volume Change during Visual Stimulation under Hypotension Condition , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[148]  K. Uğurbil,et al.  High‐resolution, spin‐echo BOLD, and CBF fMRI at 4 and 7 T , 2002, Magnetic resonance in medicine.

[149]  G. Lohmann,et al.  Color-Word Matching Stroop Task: Separating Interference and Response Conflict , 2001, NeuroImage.

[150]  Yiping P. Du,et al.  Correction of concomitant magnetic field‐induced image artifacts in nonaxial echo‐planar imaging , 2002, Magnetic resonance in medicine.

[151]  Robert Turner,et al.  Echo time dependence of BOLD contrast and susceptibility artefacts , 2001, NeuroImage.

[152]  Glyn Johnson,et al.  Novel approach to the measurement of absolute cerebral blood volume using vascular‐space‐occupancy magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[153]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[154]  R. Constable,et al.  Composite image formation in z‐shimmed functional MR imaging , 1999, Magnetic resonance in medicine.

[155]  Jyh-Horng Chen,et al.  Vascular space occupancy‐dependent functional MRI by tissue suppression , 2008, Journal of magnetic resonance imaging : JMRI.

[156]  Bojana Stefanovic,et al.  Venous refocusing for volume estimation: VERVE functional magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[157]  David G Norris,et al.  Fast spin echo sequences for BOLD functional MRI , 2007, Magnetic Resonance Materials in Physics, Biology and Medicine.

[158]  D. Norris,et al.  A qualitative test of the balloon model for BOLD‐based MR signal changes at 3T , 2001, Magnetic resonance in medicine.

[159]  D. S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[160]  J W Belliveau,et al.  Functional cerebral imaging by susceptibility‐contrast NMR , 1990, Magnetic resonance in medicine.

[161]  S. van Pelt,et al.  Dynamic neural representations of human visuomotor space , 2003 .

[162]  Christine Preibisch,et al.  Exponential excitation pulses for improved water content mapping in the presence of background gradients , 2008, Magnetic resonance in medicine.

[163]  D. Feinberg,et al.  Single‐shot GRASE imaging with short effective TEs , 1996, Journal of magnetic resonance imaging : JMRI.

[164]  G. McCarthy,et al.  Functional NMR imaging using fast spin echo at 1.5 T , 1994, Magnetic resonance in medicine.

[165]  D. Porter,et al.  Concomitant field terms for asymmetric gradient coils: Consequences for diffusion, flow, and echo‐planar imaging , 2008, Magnetic resonance in medicine.

[166]  R J Ordidge,et al.  Simultaneous noninvasive measurement of CBF and CBV using double‐echo FAIR (DEFAIR) , 2001, Magnetic resonance in medicine.

[167]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[168]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[169]  Benedikt A. Poser,et al.  Measurement of activation-related changes in cerebral blood volume: VASO with single-shot HASTE acquisition , 2007, Magnetic Resonance Materials in Physics, Biology and Medicine.

[170]  Nikolaus Weiskopf,et al.  Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI , 2005, NeuroImage.

[171]  Peter Andersen,et al.  In vivo 1H2O T  †2 measurement in the human occipital lobe at 4T and 7T by Carr‐Purcell MRI: Detection of microscopic susceptibility contrast , 2002, Magnetic resonance in medicine.

[172]  Carlos Gussenhoven,et al.  Prosody and information structure: An fMRI study , 2006 .

[173]  P. Eslinger,et al.  Multi‐gradient echo with susceptibility inhomogeneity compensation (MGESIC): Demonstration of fMRI in the olfactory cortex at 3.0 T , 1997, Magnetic resonance in medicine.

[174]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[175]  R T Constable,et al.  Applications and limitations of whole‐brain MAGIC VASO functional imaging , 2007, Magnetic resonance in medicine.

[176]  D. Norris,et al.  BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI , 2006, Magnetic resonance in medicine.

[177]  Rishma Vidyasagar,et al.  Effects of mild hypoxic hypoxia on poststimulus undershoot of blood-oxygenation-level-dependent fMRI signal in the human visual cortex. , 2006, Magnetic resonance imaging.

[178]  G. Crelier,et al.  Stimulus-Dependent BOLD and Perfusion Dynamics in Human V1 , 1999, NeuroImage.

[179]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[180]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[181]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[182]  J. Pekar,et al.  Hemodynamic Changes after Visual Stimulation and Breath Holding Provide Evidence for an Uncoupling of Cerebral Blood Flow and Volume from Oxygen Metabolism , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[183]  Xavier Golay,et al.  Multiple acquisitions with global inversion cycling (MAGIC): A multislice technique for vascular‐space‐occupancy dependent fMRI , 2004, Magnetic resonance in medicine.

[184]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[185]  J. Mayhew,et al.  A Model of the Dynamic Relationship between Blood Flow and Volume Changes during Brain Activation , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.