Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation from Contrast Enhanced CT

[1]  Hao Chen,et al.  The Liver Tumor Segmentation Benchmark (LiTS) , 2019, Medical Image Anal..

[2]  Hao Chen,et al.  Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation , 2020, IEEE Transactions on Medical Imaging.

[3]  Joseph O. Deasy,et al.  Tumor-Aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation , 2018, MICCAI.

[4]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[5]  Lei Xing,et al.  Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images , 2019, IEEE Transactions on Medical Imaging.

[6]  Martin Styner,et al.  Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets , 2009, IEEE Transactions on Medical Imaging.

[7]  Li-Jia Li,et al.  Generative Modeling for Small-Data Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Chi-Wing Fu,et al.  H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes , 2018, IEEE Transactions on Medical Imaging.

[9]  Klaus H. Maier-Hein,et al.  Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2019, Bildverarbeitung für die Medizin.

[10]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[11]  Orcun Goksel,et al.  Overview of the VISCERAL Challenge at ISBI 2015 , 2015, VISCERAL Challenge@ISBI.

[12]  Akinobu Shimizu,et al.  A conditional statistical shape model with integrated error estimation of the conditions; Application to liver segmentation in non-contrast CT images , 2014, Medical Image Anal..