The Guadalquivir Estuary: A Hot Spot for Environmental and Human Conflicts

The Guadalquivir estuary has an important place in history as mainland Europe’s most southern large river-estuary-delta system. Intensification of human pressure combined with a limited understanding of its functioning have resulted in increasing socio-economic and environmental conflicts over the estuary. Within this context, the existing scientific framework could not answer the concerns raised about the consequences of dredging to substantially increase its depth, allowing large ships to serve the port of Seville.

[1]  Riccardo Lanari,et al.  Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks , 2007 .

[2]  S. Baden,et al.  Hypoxia-induced structural changes in the diet of bottom-feeding fish and Crustacea , 1992 .

[3]  U. Witte,et al.  Pore‐water advection and solute fluxes in permeable marine sediments (II): Benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea) , 2005 .

[4]  W. Prell,et al.  Summer Bottom Water Dissolved Oxygen in Upper Narragansett Bay , 2008 .

[5]  I. Caballero,et al.  Assessment of suspended solids in the Guadalquivir estuary using new DEIMOS-1 medium spatial resolution imagery , 2014 .

[6]  R. E. Turner,et al.  Global change and eutrophication of coastal waters , 2009 .

[7]  M J Dunbar,et al.  Developing environment-specific water quality guidelines for suspended particulate matter. , 2012, Water research.

[8]  L. Burnett THE CHALLENGES OF LIVING IN HYPOXIC AND HYPERCAPNIC AQUATIC ENVIRONMENTS , 1997 .

[9]  J. Ruiz,et al.  Spatial and temporal variability of phytoplankton in the Gulf of Cádiz through remote sensing images , 2006 .

[10]  J. B. Morgan,et al.  Turbidity enhances feeding abilities of larval Pacific herring, Clupea harengus pallasi , 1985, Hydrobiologia.

[11]  D. Dauer,et al.  Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay , 1992 .

[12]  W. Johns,et al.  Physical oceanography of the Amazon shelf , 1996 .

[13]  Carlos Moreno,et al.  Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. , 2007, Chemosphere.

[14]  D. Hansen,et al.  NEW DIMENSIONS IN ESTUARY CLASSIFICATION1 , 1966 .

[15]  C. Gascó,et al.  Distribution and inventories of fallout radionuclides (239+240Pu, 137Cs) and 210Pb to study the filling velocity of salt marshes in Doñana National Park (Spain). , 2006, Journal of environmental radioactivity.

[16]  A. Baquerizo,et al.  Tide transformation in the Guadalquivir estuary (SW Spain) and process-based zonation , 2012 .

[17]  J. Culp,et al.  Northern Rivers Ecosystem Initiative: Nutrients and Dissolved Oxygen – Issues and Impacts , 2006, Environmental monitoring and assessment.

[18]  W. Boynton,et al.  Influence of water circulation rate on in situ measurements of benthic community respiration , 1981 .

[19]  R. Jahnke,et al.  Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter , 2000 .

[20]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[21]  D. D. Macdonald,et al.  Effects of Suspended Sediments on Aquatic Ecosystems , 1991 .

[22]  D. H. Buck Effects of turbidity on fish and fishing , 2011 .

[23]  J. G. Arteaga Valencianos y arroz en las marismas del Guadalquivir , 1993 .

[24]  Gabriel Navarro,et al.  Temporal and spatial variability in the Guadalquivir estuary: a challenge for real-time telemetry , 2011 .

[25]  Bruce B. Benson,et al.  The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1 , 1984 .

[26]  E. Houde,et al.  Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay , 2000 .

[27]  L. Cáceres,et al.  Recent coastal evolution of the Doñana National Park (SW Spain) , 1996 .

[28]  R. Sternberg,et al.  Fluid-mud processes on the Amazon continental shelf , 1996 .

[29]  R. Delaune,et al.  Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana1 , 1983 .

[30]  F. Novo,et al.  High-intensity versus low-intensity restoration alternatives of a tidal marsh in Guadalquivir estuary, SW Spain , 2007 .

[31]  J. Burkholder,et al.  Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies , 2004 .

[32]  H. R. Dankwa,et al.  Nursery function of an estuarine tidal marsh for the brown shrimp Crangon crangon , 1997 .

[33]  G. Riedel,et al.  Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries , 2009, PloS one.

[34]  H. Fischer Mixing in Inland and Coastal Waters , 1979 .

[35]  C. Granado-Lorencio The effect of man on the fish fauna of the River Guadalquivir, Spain , 1991 .

[36]  Helmut Hillebrand,et al.  Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. , 2007, Ecology letters.

[37]  A. Baquerizo,et al.  NONUNIFORM ALONGSHORE SEDIMENT TRANSPORT INDUCED BY COASTLINE CURVATURE , 2012 .

[38]  W. V. Kesteren,et al.  Introduction to the Physics of Cohesive Sediment in the Marine Environment , 2013 .

[39]  C. Heip,et al.  Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): results of an integrated monitoring approach , 2005, Hydrobiologia.

[40]  T. Burt,et al.  Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible? , 2010 .

[41]  E. Hansen,et al.  Sand Bed Load in a Brook Trout Stream , 1986 .

[42]  J. Dias,et al.  Contrasting styles of the Holocene highstand sedimentation and sediment dispersal systems in the northern shelf of the Gulf of Cadiz , 2004 .

[43]  C. Friedrichs,et al.  Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field , 2005 .

[44]  C. Heip,et al.  Impact of elevated CO2 on shellfish calcification , 2007 .

[45]  M. Zuschin,et al.  Tolerance of benthic macrofauna to hypoxia and anoxia in shallow coastal seas: a realistic scenario , 2012 .

[46]  F. F. Pérèz,et al.  Alkalinity determination by potentiometry - intercalibration using three different methods , 2000 .

[47]  Carlos M. Duarte,et al.  Thresholds of hypoxia for marine biodiversity , 2008, Proceedings of the National Academy of Sciences.

[48]  P. Drake,et al.  Spatio-temporal distribution of early life stages of the European anchovy Engraulis encrasicolus L. within a European temperate estuary with regulated freshwater inflow: effects of environmental variables , 2007 .

[49]  J. E. Marcovecchio,et al.  Análisis de fuentes y toxicidad equivalente de sedimentos contaminados con PAHs en el estuario de Bahía Blanca, Argentina , 2010 .

[50]  K. Kirk Effects of suspended clay on Daphnia body growth and fitness , 1992 .

[51]  Miguel Á. Reyes-Merlo,et al.  On the relative influence of climate forcing agents on the saline intrusion in a well-mixed estuary: Medium-term Monte Carlo predictions , 2016 .

[52]  C. Gobler,et al.  The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica) , 2009 .

[53]  J. Ruiz,et al.  Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula) , 2009 .

[54]  Chris Langdon,et al.  Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment , 2005 .

[55]  C. Schreck,et al.  Physiological Effects on Coho Salmon and Steelhead of Exposure to Suspended Solids , 1987 .

[56]  Alfredo Izquierdo,et al.  The influence of sediment load on tidal dynamics, a case study : Cádiz Bay , 1999 .

[57]  Gabriel Navarro,et al.  Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain) , 2012, Sensors.

[58]  Elin Almroth-Rosell,et al.  Effects of simulated natural and massive resuspension on benthic oxygen, nutrient and dissolved inorganic carbon fluxes in Loch Creran, Scotland , 2012 .

[59]  S. Solomon,et al.  Daytime climatology of ionospheric NmF2 and hmF2 from COSMIC data , 2012 .

[60]  M. Losada,et al.  Spatio‐temporal distribution, along‐channel transport, and post‐riverflood recovery of salinity in the Guadalquivir estuary (SW Spain) , 2013 .

[61]  A. Baquerizo,et al.  Structure of the turbidity field in the Guadalquivir estuary: Analysis of observations and a box model approach , 2014 .

[62]  David Roque,et al.  Ocean data manager handles large, diverse data sets , 2011 .

[63]  W. Cai,et al.  The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia , 1998 .