Mechanics of carbon nanotubes

Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures--including high strength, high stiffness, low density and structural perfection--could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of these predictions, along with a number of computer simulation methods applied to their modeling, has led over the past decade to an improved but by no means complete understanding of the mechanics of carbon nanotubes. We review the theoretical predictions and discuss the experimental techniques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures. We also outline the computational approaches that have been taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum models. The development of multiscale and multiphysics models and simulation tools naturally arises as a result of the link between basic scientific research and engineering application; while this issue is still under intensive study, we present here some of the approaches to this topic. Our concentration throughout is on the exploration of mechanical properties such as Young's modulus, bending stiffness, buckling criteria, and tensile and compressive strengths. Finally, we discuss several examples of exciting applications that take advantage of these properties, including nanoropes, filled nanotubes, nanoelectromechanical systems, nanosensors, and nanotube-reinforced polymers. This review article cites 349 references.

[1]  Donald W. Brenner,et al.  Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics , 1995 .

[2]  Theodore L. Brown Chemistry: The Central Science , 1981 .

[3]  C. Ru,et al.  Elastic buckling of single-walled carbon nanotube ropes under high pressure , 2000 .

[4]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[5]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[6]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[7]  Masato Tomita,et al.  LaC2 Encapsulated in Graphite Nano-Particle , 1993 .

[8]  Liu Self-consistent tight-binding method. , 1995, Physical review. B, Condensed matter.

[9]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[10]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[11]  Richard D. James,et al.  A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .

[12]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[13]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[14]  Mark J. Dyer,et al.  Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study , 2001 .

[15]  Donald W. Brenner,et al.  Simulated Tribochemistry: An Atomic-Scale View of the Wear of Diamond , 1994 .

[16]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[17]  Y Ohta,et al.  The tight-binding bond model , 1988 .

[18]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[19]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[20]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .

[21]  Malcolm L. H. Green,et al.  Immobilization of Platinated and Iodinated Oligonucleotides on Carbon Nanotubes , 1997 .

[22]  Malcolm L. H. Green,et al.  The opening and filling of single walled carbon nanotubes (SWTs) , 1998 .

[23]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[24]  Geraldine Jacobsen,et al.  The World's Smallest Gas Cylinders? , 1997 .

[25]  Kyeongjae Cho,et al.  Chemical control of nanotube electronics , 2000 .

[26]  V. L. Moruzzi,et al.  CALCULATED ELECTRONIC PROPERTIES OF ORDERED ALLOYS: A HANDBOOK , 1995 .

[27]  J W Martin,et al.  Many-body forces in solids and the Brugger elastic constants. II. Inner elastic constants , 1975 .

[28]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[29]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[30]  Karen Lozano,et al.  A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties , 2001 .

[31]  J. Z. Liu,et al.  Effect of a rippling mode on resonances of carbon nanotubes. , 2001, Physical review letters.

[32]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[33]  Donald W. Brenner,et al.  Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces , 1993 .

[34]  William A. Goddard,et al.  Prediction of fullerene packing in C60 and C70 crystals , 1991, Nature.

[35]  Koichi Kikuchi,et al.  ENCAPSULATION OF RADIOACTIVE 159GD AND 161TB ATOMS IN FULLERENE CAGES , 1994 .

[36]  Marc Monthioux,et al.  Abundance of encapsulated C60 in single-wall carbon nanotubes , 1999 .

[37]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[38]  Pulickel M. Ajayan,et al.  Nanometre-size tubes of carbon , 1997 .

[39]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[40]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[41]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[42]  Yoshinori Ando,et al.  Synthesis and electron-beam incision of carbon nanocapsules encaging YC2 , 1993 .

[43]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[44]  Nan Yao,et al.  Radial compression and controlled cutting of carbon nanotubes , 1998 .

[45]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[46]  Edward E. DiTomas New Materials for the 21st Century , 1996 .

[47]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[48]  Frank T. Fisher,et al.  Nanomechanics and the Viscoelastic Behavior of Carbon Nanotube-Reinforced Polymers , 2002 .

[49]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[50]  M. Gurtin,et al.  Phase Transformation and Material Instabilities in Solids , 1984 .

[51]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[52]  Iijima,et al.  Growth model for carbon nanotubes. , 1992, Physical review letters.

[53]  Madhu Menon,et al.  Computational nanotechnology with carbon nanotubes and fullerenes , 2001, Comput. Sci. Eng..

[54]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[55]  Rodney S. Ruoff,et al.  Single Crystal Metals Encapsulated in Carbon Nanoparticles , 1993, Science.

[56]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[57]  Enrico Clementi,et al.  Ab initio computations in atoms and molecules , 1965, IBM J. Res. Dev..

[58]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[59]  Susan B. Sinnott,et al.  Molecular dynamics simulations of the filling and decorating of carbon nanotubules , 1999 .

[60]  Malcolm L. H. Green,et al.  Thinning and opening of carbon nanotubes by oxidation using carbon dioxide , 1993, Nature.

[61]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[62]  Malcolm L. H. Green,et al.  The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes , 2000 .

[63]  Ted Belytschko,et al.  The extended finite element method for rigid particles in Stokes flow , 2001 .

[64]  Kenneth A. Smith,et al.  Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates , 1999 .

[65]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[66]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[67]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[68]  James C. Withers,et al.  Yttrium carbide in nanotubes , 1993, Nature.

[69]  Philip G. Collins,et al.  Materials: Peeling and sharpening multiwall nanotubes , 2000, Nature.

[70]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[71]  Otto Zhou,et al.  Alignment of carbon nanotubes in a polymer matrix by mechanical stretching , 1998 .

[72]  R. A. Uras,et al.  Enrichment of the Finite Element Method With the Reproducing Kernel Particle Method , 1995 .

[73]  Andrew G. Rinzler,et al.  Mechanical Energy Storage in Carbon Nanotube Springs , 1999 .

[74]  Enrico Clementi Ab Initio Computations in Atoms and Molecules , 1965, IBM J. Res. Dev..

[75]  John P. Perdew,et al.  Density-functional theory of the correlation energy in atoms and ions: A simple analytic model and a challenge , 1981 .

[76]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[77]  Y. Saito,et al.  Carbon nanocapsules and single‐layered nanotubes produced with platinum‐group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge , 1996 .

[78]  James C. Withers,et al.  Preparation and properties of ferromagnetic carbon‐coated Fe, Co, and Ni nanoparticles , 1996 .

[79]  Smith,et al.  Multiscale simulation of loading and electrical resistance in silicon nanoindentation , 2000, Physical review letters.

[80]  Madhu Menon,et al.  Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability , 1997 .

[81]  Madhu Menon,et al.  NANOPLASTICITY OF SINGLE-WALL CARBON NANOTUBES UNDER UNIAXIAL COMPRESSION , 1999 .

[82]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[83]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[84]  Gregory J. Wagner,et al.  Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope , 2002 .

[85]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[86]  Katsumi Tanigaki,et al.  Opening and purification of carbon nanotubes in high yields , 1995 .

[87]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[88]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[89]  David Tománek,et al.  Structural rigidity and low frequency vibrational modes of long carbon tubules , 1993 .

[90]  X. B. Zhang,et al.  A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes , 1995, Science.

[91]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[92]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[93]  Kuo Chu Hwang,et al.  Efficient cleavage of carbon graphene layers by oxidants , 1995 .

[94]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[95]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[96]  Seiji Akita,et al.  RAPID COMMUNICATION: Orientation and purification of carbon nanotubes using ac electrophoresis , 1998 .

[97]  Malcolm L. H. Green,et al.  Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity , 1995 .

[98]  Jaromír Slavík,et al.  COMPUTATIONAL MECHANICS I , 2004 .

[99]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[100]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[101]  P. N. Keating,et al.  Relationship between the Macroscopic and Microscopic Theory of Crystal Elasticity. II. Nonprimitive Crystals , 1966 .

[102]  Bobby G. Sumpter,et al.  Dynamics of fluid flow inside carbon nanotubes , 1996 .

[103]  J. Keinonen,et al.  Formation of Ion Irradiation-Induced Small-Scale Defects on Graphite Surfaces. , 1996, Physical review letters.

[104]  H. Daniel Wagner,et al.  Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors , 2001 .

[105]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[106]  M. S. Dresselhaus,et al.  Structure of Fullerenes , 1996 .

[107]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[108]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[109]  Michael Ortiz,et al.  Nanoindentation and incipient plasticity , 1999 .

[110]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[111]  John C. Slater,et al.  Comparison of Several Exchange Potentials for Electrons in the Cu + Ion , 1969 .

[112]  C. Q. Ru,et al.  Column buckling of multiwalled carbon nanotubes with interlayer radial displacements , 2000 .

[113]  James C. Withers,et al.  Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters , 1993 .

[114]  Dong Qian,et al.  Mechanics of C60 in nanotubes , 2001 .

[115]  M. Cross,et al.  A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate , 1998 .

[116]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[117]  Herbert Shea,et al.  Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .

[118]  Malcolm L. H. Green,et al.  Capillarity and silver nanowire formation observed in single walled carbon nanotubes , 1999 .

[119]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[120]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[121]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[122]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[123]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[124]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[125]  M. W. Cole,et al.  Hydrogen Adsorption in Nanotubes , 1998 .

[126]  Kenneth J. Tupper,et al.  Molecular dynamics simulations of friction in self-assembled monolayers , 1994 .

[127]  J W Martin,et al.  Many-body forces in metals and the Brugger elastic constants , 1975 .

[128]  Frank T. Fisher,et al.  Effects of nanotube waviness on the modulus of nanotube-reinforced polymers , 2002 .

[129]  Jian Ping Lu,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999 .

[130]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[131]  Enrique V. Barrera,et al.  Key methods for developing single-wall nanotube composites , 2000 .

[132]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[133]  Z. Gu,et al.  Defects in arc-discharge-produced single-walled carbon nanotubes , 1999 .

[134]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[135]  R. Byron Pipes,et al.  Helical carbon nanotube arrays: mechanical properties , 2002 .

[136]  Majetich,et al.  Preparation and properties of carbon-coated magnetic nanocrystallites. , 1993, Physical review. B, Condensed matter.

[137]  Kyeongjae Cho,et al.  Molecular Dynamics Study of Temperature Dependent Plastic Collapse of Carbon Nanotubes under Axial Compression , 2002 .

[138]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[139]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[140]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[141]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[142]  Supapan Seraphin,et al.  Filling the carbon nanocages , 1996 .

[143]  Mark J. Dyer,et al.  Locked twist in multiwalled carbon-nanotube ribbons , 2001 .

[144]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[145]  R. Ruoff,et al.  Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force , 2000, Physical review letters.

[146]  S. Amelinckx,et al.  Electron diffraction and microscopy of nanotubes , 1999 .

[147]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces. , 1998 .

[148]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[149]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[150]  Kenji Sugiyama,et al.  Synthesis of actinide carbides encapsulated within carbon nanoparticles , 1995 .

[151]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[152]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[153]  W. R. Dean On the Theory of Elastic Stability , 1925 .

[154]  Tsuneya Ando,et al.  Physics of Carbon Nanotubes , 2003 .

[155]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[156]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[157]  Donald W. Brenner,et al.  Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces , 1992 .

[158]  Malcolm L. H. Green,et al.  1D lanthanide halide crystals inserted into single-walled carbon nanotubes , 2000 .

[159]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[160]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[161]  Harrison,et al.  Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. , 1992, Physical review. B, Condensed matter.

[162]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[163]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[164]  H. Rafii-Tabar,et al.  Multiscale numerical modelling of cracK propagation in tvvo-dimensional metal plate , 1998 .

[165]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[166]  Yoshiyuki Kawazoe,et al.  Tight-binding parametrization of transition metal elements from LCAO ab initio Hamiltonians , 1998 .

[167]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[168]  Donald W. Brenner,et al.  On the way to fullerenes : molecular dynamics study of the Curling and closure of graphitic ribbons , 1992 .

[169]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[170]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[171]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[172]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[173]  Weidian C. Shen,et al.  Investigation of the radial compression of carbon nanotubes with a scanning probe microscope , 2000, Physical review letters.

[174]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[175]  Sara A. Majetich,et al.  Magnetic properties of carbon‐coated, ferromagnetic nanoparticles produced by a carbon‐arc method , 1994 .

[176]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[177]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[178]  Hayashi,et al.  Interlayer spacings in carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[179]  C. Q. Ru,et al.  Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips , 2001 .

[180]  John C. Slater,et al.  Wave Functions for Impurity Levels , 1954 .

[181]  Zhao,et al.  X-ray diffraction data for graphite to 20 GPa. , 1989, Physical review. B, Condensed matter.

[182]  Marc Fivel,et al.  Formation and strength of dislocation junctions in FCC metals : A study by dislocation dynamics and atomistic simulations , 2001 .

[183]  David G. Pettifor,et al.  ANALYTIC BOND-ORDER POTENTIALS BEYOND TERSOFF-BRENNER. II. APPLICATION TO THE HYDROCARBONS , 1999 .

[184]  Pulickel M. Ajayan,et al.  Nanometer‐Size Tubes of Carbon , 1998 .

[185]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[186]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[187]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[188]  Russell M. Taylor,et al.  Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG , 2000 .

[189]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[190]  Yahachi Saito CARBON CAGES WITH NANOSPACE INSIDE: FULLERENES TO NANOCAPSULES , 1996 .

[191]  W M Burch,et al.  The physical and chemical nature of technegas. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[192]  Yan Zhang,et al.  Multiple scale finite element methods , 1991 .

[193]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[194]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[195]  Shrikant Lele,et al.  Stabilization of the amorphous phase inside carbon nanotubes: Solidification in a constrained geometry , 1994 .

[196]  Stephen K. Gray,et al.  Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods , 1994 .

[197]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[198]  P. N. Keating,et al.  On the sufficiency of the Born-Huang relations , 1967 .

[199]  R.K. Kalia,et al.  Multiscale simulation of nanosystems , 2001, Comput. Sci. Eng..

[200]  M. Dresselhaus,et al.  Introduction to Carbon Materials Research , 2001 .

[201]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[202]  H. Craighead,et al.  Mechanical resonant immunospecific biological detector , 2000 .

[203]  日本数学会,et al.  Encyclopedic dictionary of mathematics , 1993 .

[204]  Y. Saito,et al.  Carbon Nanocapsules And Single-Wall Nanotubes Formed By Arc Evaporation , 1996 .

[205]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[206]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[207]  Kyeongjae Cho,et al.  Temperature and Strain-Rate Dependent Plastic Deformation of Carbon Nanotube , 2001 .

[208]  Philippe H. Geubelle,et al.  On the continuum modeling of carbon nanotubes , 2002 .

[209]  Sumio Iijima,et al.  Growth of carbon nanotubes , 1993 .

[210]  Donald W. Brenner,et al.  Atomistic Simulations of Friction at Sliding Diamond Interfaces , 1993 .

[211]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[212]  Yahachi Saito,et al.  Carbon nanocapsules encaging metals and carbides , 1993 .

[213]  V. Crespi,et al.  Plastic Deformations of Carbon Nanotubes , 1998 .

[214]  C. Q. Ru,et al.  Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube , 2000 .

[215]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[216]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[217]  David C. Joy,et al.  Condensed phase growth of single-wall carbon nanotubes from laser annealed nanoparticulates , 2001 .

[218]  Vivek B. Shenoy,et al.  Finite Temperature Quasicontinuum Methods , 1998 .

[219]  Dong Qian,et al.  Bent and kinked multi-shell carbon nanotubes - Treating the interlayer potential more realistically , 2002 .

[220]  Fujita,et al.  Formation of general fullerenes by their projection on a honeycomb lattice. , 1992, Physical review. B, Condensed matter.

[221]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[222]  David L. Price,et al.  Neutron scattering study of H2 adsorption in single-walled carbon nanotubes , 2001 .

[223]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[224]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[225]  Gregory J. Wagner,et al.  Hierarchical enrichment for bridging scales and mesh-free boundary conditions , 2001 .

[226]  Su Hao,et al.  Localization-Induced Band and Cohesive Model , 2000 .

[227]  J. A. Alonso,et al.  Novel polygonized single-wall carbon nanotube bundles. , 2001, Physical review letters.

[228]  Michael Ortiz,et al.  Quasicontinuum models of fracture and plasticity , 1998 .

[229]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[230]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[231]  P. N. Keating,et al.  Theory of the Third-Order Elastic Constants of Diamond-Like Crystals , 1966 .

[232]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[233]  Wing Kam Liu,et al.  Wavelet and multiple scale reproducing kernel methods , 1995 .

[234]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[235]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[236]  K. Brugger,et al.  Thermodynamic Definition of Higher Order Elastic Coefficients , 1964 .

[237]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[238]  L. Sekaric,et al.  Measurement of mechanical resonance and losses in nanometer scale silicon wires , 1999 .

[239]  H. Daniel Wagner,et al.  Single-wall carbon nanotubes as molecular pressure sensors , 2000 .

[240]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[241]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[242]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[243]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[244]  Dong Qian,et al.  What kind of carbon nanofiber is ideal for structural applications , 2002 .

[245]  Donald W. Brenner,et al.  Molecular Dynamics Simulations of Carbon Nanotube Rolling and Sliding on Graphite , 2000 .

[246]  A. D. Prins,et al.  Mechanical Response of Carbon Nanotubes under Molecular and Macroscopic Pressures , 1999 .

[247]  T. Ichihashi,et al.  Opening carbon nanotubes with oxygen and implications for filling , 1993, Nature.

[248]  Wing Kam Liu,et al.  Multiresolution reproducing kernel particle method for computational fluid dynamics , 1997 .

[249]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[250]  J W Martin,et al.  Many-body forces in solids: elastic constants of diamond-type crystals , 1975 .

[251]  J. Bernholc,et al.  Theory of growth and mechanical properties of nanotubes , 1998 .

[252]  Marc Monthioux,et al.  Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials , 1999 .

[253]  Gregory M. Odegard,et al.  Constitutive Modeling of Nanotube-Reinforced Polymer Composites , 2002 .

[254]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000 .

[255]  Jae Hyun Chung,et al.  Nanoscale gap fabrication and integration of carbon nanotubes by micromachining , 2002 .

[256]  Donald W. Brenner,et al.  Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces , 1993 .

[257]  Lian Gao,et al.  Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation , 2003 .

[258]  David Tománek,et al.  Scrolls and nested tubes in multiwall carbon nanotubes , 2002 .

[259]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[260]  Mehl,et al.  Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. , 1996, Physical review. B, Condensed matter.

[261]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[262]  Sanjay Govindjee,et al.  On the use of continuum mechanics to estimate the properties of nanotubes , 1999 .

[263]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[264]  W M Burch,et al.  Technegas - a new ventilation agent for lung scanning , 1986, Nuclear medicine communications.

[265]  Peihong Zhang,et al.  NUCLEATION OF CARBON NANOTUBES WITHOUT PENTAGONAL RINGS , 1999 .

[266]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[267]  Che Ting Chan,et al.  A transferable tight-binding potential for carbon , 1992 .

[268]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[269]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[270]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[271]  R. Ruoff,et al.  Magnetic separation of GdC2 encapsulated in carbon nanoparticles , 1994 .

[272]  Stephan,et al.  Growth of manganese filled carbon nanofibers in the vapor phase. , 1994, Physical review letters.

[273]  Falvo,et al.  Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes , 1998, Microscopy and Microanalysis.

[274]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[275]  David E. Luzzi,et al.  Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis , 2000 .

[276]  J. Boettger,et al.  All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite , 1997 .

[277]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[278]  D. Rodney,et al.  Structure and Strength of Dislocation Junctions: An Atomic Level Analysis , 1999 .

[279]  A. D. Prins,et al.  Carbon nanotubes : from molecular to macroscopic sensors , 2000 .

[280]  Jun Liu,et al.  Surfactant-assisted processing of carbon nanotube/polymer composites , 2000 .

[281]  Hui-Ming Cheng,et al.  Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes , 2000 .

[282]  Vasyl Harik,et al.  Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods , 2001 .

[283]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[284]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[285]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[286]  L. A. GliurALco Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 2022 .

[287]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[288]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[289]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[290]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[291]  R. Ruoff,et al.  Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. , 2001, Physical review letters.

[292]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[293]  Ted Belytschko,et al.  Advances in multiple scale kernel particle methods , 1996 .

[294]  H. Daniel Wagner,et al.  Using carbon nanotubes to detect polymer transitions , 2001 .

[295]  Yahachi Saito,et al.  Bamboo-shaped carbon tube filled partially with nickel , 1993 .

[296]  Stefano Curtarolo,et al.  Atoms in nanotubes: Small dimensions and variable dimensionality , 1999 .

[297]  Bobby G. Sumpter,et al.  Dynamics of flow inside carbon nanotubes , 1997 .

[298]  G. Dresselhaus,et al.  Size Effects in Carbon Nanotubes , 1998 .

[299]  S. Majetich,et al.  Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. , 1994, Physical review. B, Condensed matter.

[300]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[301]  Menon,et al.  Universal parameter tight-binding molecular dynamics: Application to C60. , 1991, Physical review letters.

[302]  R. Superfine,et al.  Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG , 2000 .

[303]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[304]  V. Moruzzi,et al.  Calculated electronic properties of ordered alloys : a handbook : the elements and their 3d/3d and 4d/4d alloys , 1995 .

[305]  Marc Monthioux,et al.  Abundance of encapsulated C 60 in single-wall carbon nanotubes , 1999 .

[306]  L. Landau Quantum Mechanics-Nonrelativistic Theory , 1958 .

[307]  Yahachi Saito,et al.  Nanoparticles and filled nanocapsules , 1995 .

[308]  Sasaki,et al.  Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure , 2000, Physical review letters.

[309]  C. H. Chen,et al.  Defects in Carbon Nanostructures , 1994, Science.

[310]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[311]  Dennis M. Bushnell,et al.  Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams? , 2001 .

[312]  Donald W. Brenner,et al.  Surface patterning by atomically-controlled chemical forces : molecular dynamics simulations , 1994 .

[313]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[314]  Donald W. Brenner,et al.  TEMPERATURE-DEPENDENT FUSION OF COLLIDING C60 FULLERENES FROM MOLECULAR DYNAMICS SIMULATIONS , 1995 .

[315]  G Dearnaley,et al.  Electronic Structure and Properties of Solids: The Physics of the Chemical Bond , 1980 .

[316]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[317]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[318]  Crespi,et al.  Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes , 2000, Physical review letters.

[319]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[320]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[321]  Donald W. Brenner,et al.  Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene , 1991 .

[322]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[323]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[324]  Dennis Normile,et al.  Nanotubes Generate Full-Color Displays , 1999, Science.

[325]  A. Messiah Quantum Mechanics , 1961 .

[326]  Min-Feng Yu,et al.  Multiprobe nanomanipulation and functional assembly of nanomaterials inside a scanning electron microscope , 2001 .

[327]  J. Ketterson,et al.  Buckytubes and Derivatives: Their Growth and Implications for Buckyball Formation , 1993, Science.

[328]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[329]  Carlos A. Rossit,et al.  Theory of Wire Rope , 2001 .

[330]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[331]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[332]  Amitesh Maiti,et al.  Application of Carbon Nanotubes as Electromechanical Sensors — Results from First‐Principles Simulations , 2001 .

[333]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[334]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[335]  Sara A. Majetich,et al.  Magnetic properties of carbon‐coated rare‐earth carbide nanocrystallites produced by a carbon arc method , 1994 .

[336]  Wang,et al.  Stiffness of a solid composed of C60 clusters. , 1991, Physical review. B, Condensed matter.

[337]  J. Haile Molecular Dynamics Simulation , 1992 .

[338]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.