Destruction of Representative Navy Wastes Using Supercritical Water Oxidation. Final report

Supercritical water oxidation (SCWO) is a rapidly emerging technology that presents potential as a hazardous waste treatment method for a wide variety of industrial chemicals ranging from common organic solvents to complex formulations such as paints, lubricating oils, and degreasers. The Naval Civil Engineering Laboratory is contributing to the development of this technology for application to waste materials generated at naval shipyards and bases. These wastes include paint stripping and changeout fluids generated from equipment service procedures as well as herbicides, pesticides, paint, and numerous other materials associated with base facility maintenance. An important design consideration in the development of SCWO systems centers on choosing a reactor operating temperature such that the destruction of the waste organic is sufficiently complete. This report examines the temperature dependence of the oxidation in supercritical water of seven common organic compounds and three industrial commercial materials over the temperature range of 430{degree}C to 585{degree}C and reaction times ranging from seven to thirty seconds at a pressure of 27.5 MPa (4000 psi). The materials studies are methanol, phenol, methyl ethyl ketone, ethylene glycol, acetic acid, methylene chloride, 1,1,1-tichloroethane (TCA), latex paint, motor oil, and Roundup, a commercial general purpose herbicide. The results indicate that formore » most materials, temperatures over 530{degree}C and residence times near 20 seconds afford destruction efficiencies of greater than 99.95%« less