Optimal Independent Spanning Trees on Hypercubes

Two spanning trees rooted at some vertex r in a graph G are said to be independent if for each vertex v of G, v ≠ r, the paths from r to v in two trees are vertex-disjoint. A set of spanning trees of G is said to be independent if they are pairwise independent. A set of independent spanning trees is optimal if the average path length of the trees is the minimum. Any k-dimensional hypercube has k independent spanning trees rooted at an arbitrary vertex. In this paper, an O(kn) time algorithm is proposed to construct k optimal independent spanning trees on a k-dimensional hypercube, where n = 2 k is the number of vertices in a hypercube.

[1]  Gary Chartrand,et al.  Applied and algorithmic graph theory , 1992 .

[2]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[3]  Andreas Huck Independent Trees in Planar Graphs Independent trees , 1999, Graphs Comb..

[4]  Alon Itai,et al.  Three tree-paths , 1989, J. Graph Theory.

[5]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[6]  Bülent Abali,et al.  Balanced Parallel Sort on Hypercube Multiprocessors , 1993, IEEE Trans. Parallel Distributed Syst..

[7]  Sartaj Sahni,et al.  All Pairs Shortest Paths on a Hypercube Multiprocessor , 1987, ICPP.

[8]  P. Sadayappan,et al.  Iterative Algorithms for Solution of Large Sparse Systems of Linear Equations on Hypercubes , 1988, IEEE Trans. Computers.

[9]  Yoshihide Igarashi,et al.  Reliable broadcasting in product networks , 1998, Discret. Appl. Math..

[10]  Alon Itai,et al.  The Multi-Tree Approach to Reliability in Distributed Networks , 1988, Inf. Comput..

[11]  Samir Khuller,et al.  On Independent Spanning Trees , 1992, Inf. Process. Lett..

[12]  F. Thomson Leighton HYPERCUBES AND RELATED NETWORKS , 1992 .

[13]  Fikret Erçal,et al.  Time-Efficient Maze Routing Algorithms on Reconfigurable Mesh Architectures , 1997, J. Parallel Distributed Comput..

[14]  W. Daniel Hillis,et al.  The CM-5 Connection Machine: a scalable supercomputer , 1993, CACM.

[15]  Susanne E. Hambrusch,et al.  Multiple Network Embeddings into Hypercubes , 1989 .

[16]  Parameswaran Ramanathan,et al.  Reliable Broadcast in Hypercube Multicomputers , 1988, IEEE Trans. Computers.

[17]  S. Lennart Johnsson,et al.  Communication Efficient Basic Linear Algebra Computations on Hypercube Architectures , 1987, J. Parallel Distributed Comput..

[18]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[19]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[20]  Ting-Yi Sung,et al.  Multiple-Edge-Fault Tolerance with Respect to Hypercubes , 1997, IEEE Trans. Parallel Distributed Syst..

[21]  Frank Harary,et al.  Graph Theory , 2016 .

[22]  Ge-Ming Chiu A Fault-Tolerant Broadcasting Algorithm for Hypercubes , 1998, Inf. Process. Lett..

[23]  S. Lennart Johnsson,et al.  Optimum Broadcasting and Personalized Communication in Hypercubes , 1989, IEEE Trans. Computers.

[24]  S. N. Maheshwari,et al.  Finding Nonseparating Induced Cycles and Independent Spanning Trees in 3-Connected Graphs , 1988, J. Algorithms.

[25]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[26]  Yoshihide Igarashi,et al.  Independent Spanning Trees of Product Graphs , 1996, WG.

[27]  S. F. Nugent,et al.  The iPSC/2 direct-connect communications technology , 1988, C3P.