Mean-square optimal control of Linear Parameter Varying systems with noisy scheduling parameter measurements

The problem of designing parameter-dependent output feedback controllers by using inaccurate knowledge of the scheduling parameter is addressed in the paper. Discrete time Linear Parameter Varying (LPV) systems are considered with external scheduling variables corrupted by measurement noise. The paper investigates the optimal control of such LPV class in the quadratic mean-square sense. The solution of the controller design problem is obtained as a standard optimization problem subject to Linear Matrix Inequality (LMI) constraints. A comparative simulation example is given to illustrate the proposed methodology and underline the importance of embedding stochastic information in the LPV control design procedure.

[1]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[2]  W. P. M. H. Heemels,et al.  Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters $ $ , 2010, IEEE Transactions on Automatic Control.

[3]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[4]  Valentina Orsini,et al.  A Supervised Switching Control Policy for LPV Systems With Inaccurate Parameter Knowledge , 2012, IEEE Transactions on Automatic Control.

[5]  G. Balas,et al.  Development of linear-parameter-varying models for aircraft , 2004 .

[6]  J. Bokor,et al.  DETECTION FILTER DESIGN FOR LPV SYSTEMS – A GEOMETRIC APPROACH , 2002 .

[7]  Javad Mohammadpour,et al.  LPV decoupling and input shaping for control of diesel engines , 2010, Proceedings of the 2010 American Control Conference.

[8]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[9]  Faryar Jabbari,et al.  Control of LPV systems with partly measured parameters , 1999, IEEE Trans. Autom. Control..

[10]  Valentina Orsini,et al.  Efficient LMI-Based Quadratic Stabilization of Interval LPV Systems With Noisy Parameter Measures , 2010, IEEE Transactions on Automatic Control.

[11]  Zoltán Szabó,et al.  Invariant subspaces for LPV systems and their applications , 2003, IEEE Trans. Autom. Control..

[12]  Balázs Kulcsár,et al.  Robust Inversion Based Fault Estimation for Discrete-Time LPV Systems , 2012, IEEE Transactions on Automatic Control.

[13]  Gérard Bloch,et al.  Bounded state reconstruction error for LPV systems with estimated parameters , 2004 .

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  Michel Verhaegen,et al.  Linear Parameter Varying Identification of Freeway Traffic Models , 2011, IEEE Transactions on Control Systems Technology.