Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality

Possible astronomical sources of ultraviolet circularly polarized light(UVCPL) which might be responsible for enantiomeric selection in interstellarorganic molecules are considered, Synchrotron radiation from magnetic neutronstars has been suggested as a possible source of UVCPL. However, synchrotronradiation in these situations is not predicted to be strongly circularlypolarized. Very few such sources show optical synchrotron radiation and in thefew that do circular polarization has not been observed. Magnetic white dwarfsand white dwarf binaries (Polars) can be highly circularly polarized but anyeffect on molecular clouds and star formation regions must rely on rare chance encounters. Recent observations show that substantial levels of circularpolarization are present in reflection nebulae in star formation regions. Thismechanism produces polarized light exactly when and where it is needed inregions where star formation is occurring and organic molecules are known to be present.

[1]  Kenso Soai,et al.  Amplification of a Slight Enantiomeric Imbalance in Molecules Based on Asymmetric Autocatalysis: The First Correlation between High Enantiomeric Enrichment in a Chiral Molecule and Circularly Polarized Light , 1998 .

[2]  W. Bonner,et al.  Supernovae, neutron stars and biomolecular chirality. , 1987, Bio Systems.

[3]  W. Bonner,et al.  Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. , 1977, Journal of the American Chemical Society.

[4]  Y. Myer,et al.  The circular dichroism of L-tryptophan by an improved dichrograph. , 1967, Journal of the American Chemical Society.

[5]  Lewis E. Snyder,et al.  Detection of large interstellar molecules with radio interferometers , 1997, Optics & Photonics.

[6]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[7]  K. Weiler Measurement of circular polarisation in the Crab Nebula at 1,415 MHz , 1975, Nature.

[8]  J. Liebert,et al.  The new magnetic white dwarf PG 1031 + 234 - Polarization and field structure at more than 500 milion Gauss , 1986 .

[9]  Kenso Soai,et al.  Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule , 1995, Nature.

[10]  J. Bada Amino Acid Cosmogeochemistry , 1991 .

[11]  K. Westfold,et al.  Elliptic Polarization of Synchrotron Radiation , 1968 .

[12]  M. Edmunds Giant molecular clouds , 1977, Nature.

[13]  C. Cerf,et al.  Is amino-acid homochirality due to asymmetric photolysis in space? , 1999 .

[14]  W. Bonner,et al.  Supernovae and life , 1983, Nature.

[15]  K. Weiler The Crab Nebula is not alone , 1983 .

[16]  G. Miller,et al.  ON THE BIRTHPLACES OF STARS. , 1978 .

[17]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[18]  M. Engel,et al.  Distribution and enantiomeric composition of amino acids in the Murchison meteorite , 1982, Nature.

[19]  D. Buhl,et al.  An extensive galactic search for conformer II glycine , 1983 .

[20]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[21]  P. T. Wallace,et al.  Linear polarization of optical radiation from the Crab pulsar. , 1981 .

[22]  T. Gehrels,et al.  Optical Polarization Measurements of Pulsar NP 0532 , 1969, Nature.

[23]  T. Gehrels,et al.  UPPER LIMIT TO CIRCULAR POLARIZATION OF OPTICAL PULSAR NP 0532. , 1971 .

[24]  D. Christian,et al.  EUVE J0317 — 855: a rapidly rotating, high-field magnetic white dwarf , 1997 .

[25]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[26]  M. Tamura,et al.  Polarimetry of young stellar objects — I. Linear polarization of GSS 30 , 1996 .

[27]  J. S. B. Dick,et al.  The optical polarization of the Crab Pulsar , 1988 .

[28]  S. Macko,et al.  Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite , 1997, Nature.

[29]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.

[30]  R. Kirshner,et al.  The penultimate supernova in the Large Magellanic Cloud - SNR 0540-69. 3 , 1989 .

[31]  S. Macko,et al.  Carbon isotope composition of individual amino acids in the Murchison meteorite , 1990, Nature.

[32]  J. Hough,et al.  Linear and Circular Imaging Polarimetry of the Chamaeleon Infrared Nebula , 1996 .

[33]  J. Oro,et al.  On the reported optical activity of amino acids in the Murchison meteorite , 1983, Nature.

[34]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[35]  D. Melrose,et al.  Propagation-induced Circular Polarisation in Synchrotron Sources , 1998, Publications of the Astronomical Society of Australia.

[36]  J. R. P. Angel,et al.  Performance Of The Spectropolarimeter For The Space Telescope Faint Object Spectrograph , 1982, Astronomical Telescopes and Instrumentation.

[37]  Daniel Egret,et al.  The IUE Low-Dispersion Spectra Reference Atlas , 1985 .

[38]  J L Bada,et al.  Racemization and the origin of optically active organic compounds in living organisms. , 1987, Bio Systems.

[39]  J. Mayo Greenberg,et al.  Prebiotic chiral molecules created in interstellar dust and preserved in comets, comet dust, and meteorites: an exogenous source of life's origins , 1997, Optics & Photonics.

[40]  R. Wolstencroft Astronomical Sources of Circularly Polarized Light and their Role in Determining Molecular Chirality on Earth , 1985 .

[41]  J. Roberts Supernovae and life , 1984, Nature.

[42]  Gary A. Chanan,et al.  Optical polarization of the crab-like supernova remnant 0540-693 in the Large Magellanic Cloud , 1990 .

[43]  C. Leitherer,et al.  Calibrating Hubble Space Telescope. POST Servicing Mission. , 1995 .

[44]  J. van Paradijs,et al.  Interstellar dust, chirality, comets and the origins of life: Life from dead stars? , 1995 .

[45]  L. Blitz,et al.  THE ORIGIN AND LIFETIME OF GIANT MOLECULAR CLOUD COMPLEXES , 1980 .

[46]  Circular polarization by scattering from spheroidal dust grains , 2000 .

[47]  K. Westfold,et al.  Elliptic Polarization of Synchrotron Radiation , 1967, Publications of the Astronomical Society of Australia.

[48]  Alec Moradpour,et al.  Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity , 1974 .

[49]  James G. Lawless,et al.  Amino acids in the Murchison meteorite , 1973 .

[50]  A. Lyne,et al.  The ultraviolet polarization of the Crab pulsar , 1996 .

[51]  Menard,et al.  Circular polarization in star- formation regions: implications for biomolecular homochirality , 1998, Science.

[52]  D. Monet,et al.  The Luminosity Function of White Dwarfs , 1988 .

[53]  J. Hough,et al.  Polarimetry and photometry of the new AM Herculis system RE J1844-741 , 1995 .

[54]  J. Hough,et al.  Twisting magnetic fields in the core region of OMC-1 , 1994 .

[55]  J. M. Hollis,et al.  A search for the lowest-energy conformer of interstellar glycine , 1980 .

[56]  T. Lozinskaya,et al.  Supernovae and Stellar Wind in the Interstellar Medium , 1991 .

[57]  Rainer M. E. Illing,et al.  Discovery of interstellar circular polarization in the direction of the Crab nebula. , 1972 .

[58]  K. Weiler,et al.  Relativistic Positrons in Nonthermal Radio Sources , 1997 .

[59]  B. Nordén,et al.  Was photoresolution of amino acids the origin of optical activity in life? , 1977, Nature.

[60]  G. Bignami,et al.  Hubble Space Telescope Discovers Optical Emission from the Radio Pulsar PSR 1055–52 , 1997 .

[61]  M. G. McCulloch,et al.  A search for interstellar glycine , 1979 .

[62]  J. Angel,et al.  Search for Optical Circular Polarization in the Crab Nebula , 1971, Nature.

[63]  E. Sion,et al.  The Parentage of Magnetic White Dwarfs: Implications from Their Space Motions , 1999 .

[64]  D. A. Schleuning,et al.  Far-infrared and Submillimeter Polarization of OMC-1: Evidence for Magnetically Regulated Star Formation , 1997 .

[65]  J. Hough,et al.  The AM Herculis-type binary E1405 – 451 , 1983 .

[66]  P. Roche,et al.  Infrared spectropolarimetric observations of BNKL : the grain alignment mechanism , 1985 .

[67]  Polarimetry of young stellar objects - III : Circular polarimetry of OMC-1 , 2000 .

[68]  W. Bonner,et al.  Extraterrestrial Handedness: A Reply , 1999, Origins of life and evolution of the biosphere.

[69]  S. Pizzarello,et al.  Alanine enantiomers in the Murchison meteorite , 1998, Nature.

[70]  M. Cropper,et al.  EXO 023432–5232.3 – An eclipsing AM Herculis binary , 1988 .

[71]  B. Warner The Annapolis Workshop on Magnetic Cataclysmic Variables , 1998 .

[72]  J. Angel,et al.  The optical spectrum of hydrogen at 160-350 million gauss in the white dwarf GRW +70 deg 8247 , 1985 .

[73]  L. I. Katzin,et al.  Absorption, rotatory dispersion, and circular dichroism studies on some hydroxy and amino acids. , 1968, Journal of the American Chemical Society.

[74]  D. Monet,et al.  The luminosity function of white dwarfs in the local disk and halo , 1989 .