The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index

The WIG20 index–the index of the 20 biggest companies traded on the Warsaw Stock Exchange–reached the global maximum on 29th October 2007. I have used the local DFA (Detrended Functional Analysis) to obtain the Hurst exponent (diffusion exponent) and investigate the signature of anti-correlation of share price evolution around the maximum. The analysis was applied to the share price evolution for variable DFA parameters. For many values of parameters, the evidence of anti-correlation near the WIG20 maximum was pointed out.

[1]  A guided walk down Wall Street: An introduction to Econophysics , 2004, cond-mat/0408143.

[2]  K. West,et al.  Determination of the Gaussian and Lorentzian content of experimental line shapes , 1974 .

[3]  K. Domino The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange , 2011 .

[4]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[5]  Patterns, Trends and Predictions in Stock Market Indices and Foreign Currency Exchange Rates , 2001, cond-mat/0108013.

[6]  M. Ausloos,et al.  How the financial crash of October 1997 could have been predicted , 1998 .

[7]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[8]  M. Ausloos,et al.  Applications of statistical physics to economic and financial topics , 1999 .

[9]  D. Sornette,et al.  Large financial crashes , 1997, cond-mat/9704127.

[10]  Nucleation-and-growth problem in model lipid membranes undergoing subgel phase transitions is a problem of time scale , 1999 .

[11]  Joseph L. McCauley Dynamics of markets : econophysics and finance , 2004 .

[12]  James A. Feigenbaum,et al.  DISCRETE SCALE INVARIANCE IN STOCK MARKETS BEFORE CRASHES , 1996 .

[13]  Tomaso Aste,et al.  Scaling behaviors in differently developed markets , 2003 .

[14]  Marcel Ausloos,et al.  Coherent and random sequences in financial fluctuations , 1997 .

[15]  Edgar E. Peters Fractal Market Analysis: Applying Chaos Theory to Investment and Economics , 1994 .

[16]  T. Ida,et al.  Extended pseudo-Voigt function for approximating the Voigt profile , 2000 .

[17]  D. Grech,et al.  Can one make any crash prediction in finance using the local Hurst exponent idea , 2003, cond-mat/0311627.

[18]  Pilar Grau-Carles Empirical evidence of long-range correlations in stock returns , 2000 .

[19]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[20]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[21]  D. Grech,et al.  The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market , 2008 .

[22]  D. Grech,et al.  Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market , 2008 .

[23]  G. Schehr,et al.  A note on q-Gaussians and non-Gaussians in statistical mechanics , 2007, 0705.0600.

[24]  Giovani L. Vasconcelos,et al.  Long-range correlations and nonstationarity in the Brazilian stock market , 2003 .

[25]  I. Santamaría-Holek Anomalous Diffusion in Microrheology: A Comparative Study , 2008, 0803.3761.

[26]  D. Sornette,et al.  Stock Market Crashes, Precursors and Replicas , 1995, cond-mat/9510036.

[27]  Marcel Ausloos,et al.  Visualizing the log-periodic pattern before crashes , 1999 .

[28]  Marcel Ausloos,et al.  The crash of October 1987 seen as a phase transition: amplitude and universality , 1998 .

[29]  E. Piotrowski,et al.  A subjective supply–demand model: the maximum Boltzmann/Shannon entropy solution , 2008, 0811.2084.

[30]  Edward W. Piotrowski,et al.  Subjective modelling of supply and demand—the minimum of Fisher information solution , 2010 .