On the viability of local criteria for chaos
暂无分享,去创建一个
[1] Szydlowski,et al. Invariant chaos in mixmaster cosmology. , 1994, Physical review. D, Particles and fields.
[2] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[3] Geodesic Deviation Equation Approach to Chaos , 1999, chao-dyn/9901007.
[5] F. Diacu,et al. Nonintegrability and chaos in the anisotropic Manev problem , 2000, nlin/0005051.
[6] M. Szydłowski. SECTIONAL CURVATURE IN THE DYNAMICS OF GRAVITATIONAL SYSTEMS , 1995 .
[7] Ericka Stricklin-Parker,et al. Ann , 2005 .
[8] M. Hénon,et al. On the numerical computation of Poincaré maps , 1982 .
[9] K. Maeda,et al. Chaos in static axisymmetric spacetimes: I. Vacuum case , 1996 .
[10] Chaotic orbits in thermal-equilibrium beams: Existence and dynamical implications , 2003, physics/0306006.
[11] Vladimir Igorevich Arnolʹd,et al. Problèmes ergodiques de la mécanique classique , 1967 .
[12] Curvature and chaos in general relativity , 1996, gr-qc/9609003.
[13] Nikolai SergeevichHG Krylov,et al. Works on the foundations of statistical physics , 1979 .
[14] Marko Robnik,et al. Classical dynamics of a family of billiards with analytic boundaries , 1983 .
[15] owski,et al. Geometry of spaces with the Jacobi metric , 1996 .