Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry

We report on direct, real-space imaging of the stray magnetic field above a micro-scale disc of a thin film of the high-temperature superconductor YBa2Cu3O7−δ (YBCO) using scanning single spin magnetometry. Our experiments yield a direct measurement of the sample’s London penetration depth and allow for a quantitative reconstruction of the supercurrents flowing in the sample as a result of Meissner screening. These results show the potential of scanning single spin magnetometry for studies of the nanoscale magnetic properties of thin-film superconductors, which could be readily extended to elevated temperatures or magnetic fields.

[1]  A. Badı́a,et al.  Meissner state properties of a superconducting disk in a non-uniform magnetic field , 1998 .

[2]  Dmitry Budker,et al.  Detection of the Meissner effect with a diamond magnetometer , 2009, 0911.2533.

[3]  H Luetkens,et al.  Observation of Anomalous Meissner Screening in Cu/Nb and Cu/Nb/Co Thin Films. , 2018, Physical review letters.

[4]  O. Arcizet,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011 .

[5]  H. Alloul Introduction to Superconductivity , 2011 .

[6]  N. G. Sepulveda,et al.  Using a magnetometer to image a two‐dimensional current distribution , 1989 .

[7]  E Neu,et al.  Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. , 2015, Nature nanotechnology.

[8]  Andrea Zappe,et al.  Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit. , 2015, Nano letters.

[9]  Patrick Maletinsky,et al.  Fabrication of all diamond scanning probes for nanoscale magnetometry. , 2016, The Review of scientific instruments.

[10]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[11]  A. Bollinger,et al.  Dependence of the critical temperature in overdoped copper oxides on superfluid density , 2016, Nature.

[12]  E. Nazaretski,et al.  Direct measurement of the magnetic penetration depth by magnetic force microscopy , 2012, 1206.4525.

[13]  Lan Luan,et al.  Local measurement of the penetration depth in the pnictide superconductor Ba(Fe0.95Co0.05)2As2 , 2009, 0909.0744.

[14]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[15]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[16]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[17]  Eli Zeldov,et al.  A scanning superconducting quantum interference device with single electron spin sensitivity. , 2013, Nature nanotechnology.

[18]  T. Löfwander,et al.  Spontaneously broken time-reversal symmetry in high-temperature superconductors , 2015, Nature Physics.

[19]  Victor Moshchalkov,et al.  Determination of the magnetic penetration depth in a superconducting Pb film , 2014 .

[20]  Jeng-Chung Chen,et al.  Determination of the London penetration depth of FeSe0.3Te0.7 thin films by scanning SQUID microscope , 2015 .

[21]  D. Budker,et al.  Diamond Magnetometry of Superconducting Thin Films , 2013, 1308.2689.

[22]  Eyal Buks,et al.  Diamond Magnetometry of Meissner Currents in a Superconducting Film , 2016, 1601.07718.

[23]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[24]  Hans D. Hallen,et al.  SCANNING HALL-PROBE MICROSCOPY OF A VORTEX AND FIELD FLUCTUATIONS IN LA1.85SR0.15CUO4 FILMS , 1992 .

[25]  S. L. Bud'ko,et al.  Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry , 2017, 1709.02769.

[26]  C Iniotakis,et al.  Effect of surface Andreev bound states on the Bean-Livingston barrier in d-wave superconductors. , 2008, Physical review letters.

[27]  M. Huber,et al.  Imaging of super-fast dynamics and flow instabilities of superconducting vortices , 2017, Nature Communications.

[28]  T. Gacoin,et al.  Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing , 2013, 1304.1197.

[29]  Matthew E. Grein,et al.  Review of superconducting nanowire single-photon detector system design options and demonstrated performance , 2014 .

[30]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[31]  Clemens Müller,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[32]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[33]  Stuart A. Wolf,et al.  Inhomogeneous superconductivity and the “pseudogap” state of novel superconductors , 2006 .