Geometric particle swarm optimization for the sudoku puzzle

Geometric particle swarm optimization (GPSO) is a recentlyintroduced generalization of traditional particle swarm optimization(PSO) that applies to all combinatorial spaces. The aim of thispaper is to demonstrate the applicability of GPSO to non-trivialcombinatorial spaces. The Sudoku puzzle is a perfect candidate totest new algorithmic ideas because it is entertaining andinstructive as well as a non-trivial constrained combinatorialproblem. We apply GPSO to solve the sudoku puzzle.

[1]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[2]  Riccardo Poli,et al.  Product Geometric Crossover , 2006, PPSN.

[3]  Riccardo Poli,et al.  Topological crossover for the permutation representation , 2005, GECCO '05.

[4]  Jigui Sun,et al.  An Improved Discrete Particle Swarm Optimization Algorithm for TSP , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[5]  T. Yato,et al.  Complexity and Completeness of Finding Another Solution and Its Application to Puzzles , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[6]  Donald E. Knuth,et al.  Dancing links , 2000, cs/0011047.

[7]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[8]  Pablo Moscato,et al.  Handbook of Applied Optimization , 2000 .

[9]  Maurice Clerc,et al.  Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem , 2004 .

[10]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[11]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[12]  Julian Togelius,et al.  Geometric particle swarm optimization , 2008 .

[13]  Riccardo Poli,et al.  Geometric Crossover for Biological Sequences , 2006, EuroGP.

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  D. Fogel,et al.  Basic Algorithms and Operators , 1999 .

[16]  Julian Togelius,et al.  Product Geometric Crossover for the Sudoku Puzzle , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[18]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[19]  Riccardo Poli,et al.  Geometric Crossover for Sets, Multisets and Partitions , 2006, PPSN.

[20]  Riccardo Poli,et al.  Geometric landscape of homologous crossover for syntactic trees , 2005, 2005 IEEE Congress on Evolutionary Computation.

[21]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[22]  Riccardo Poli,et al.  Topological Interpretation of Crossover , 2004, GECCO.

[23]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[24]  Marco Tomassini,et al.  Evolutionary Algorithms , 1995, Towards Evolvable Hardware.

[25]  Riccardo Poli,et al.  Geometric Particle Swarm Optimisation , 2007, EuroGP.

[26]  Zbigniew Michalewicz,et al.  Evolutionary algorithms , 1997, Emerging Evolutionary Algorithms for Antennas and Wireless Communications.

[27]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .