Applications of nanofluids in solar energy: A review of recent advances

Abstract Solar energy systems (SESs) are considered as one of the most important alternatives to conventional fossil fuels, due to its ability to convert solar energy directly into heat and electricity without any negative environmental impact such as greenhouse gas emissions. Utilizing nanofluid as a potential heat transfer fluid with superior thermophysical properties is an effective method to enhance the thermal performance of solar energy systems. The purpose of this review paper is the investigation of the recent advances in the nanofluids’ applications in solar energy systems, i.e., solar collectors (SCs), photovoltaic/thermal (PV/T) systems, solar thermoelectric devices, solar water heaters, solar-geothermal combined cooling heating and power system (CCHP), evaporative cooling for greenhouses, and water desalination.

[1]  Nor Azwadi Che Sidik,et al.  Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review , 2017 .

[2]  Gianpiero Colangelo,et al.  Innovation in flat solar thermal collectors: A review of the last ten years experimental results , 2016 .

[3]  Cheng Zheng,et al.  Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications , 2017 .

[4]  Somchai Wongwises,et al.  A review of entropy generation in nanofluid flow , 2013 .

[5]  Robert A. Taylor,et al.  Nanofluid-based optical filter optimization for PV/T systems , 2012, Light: Science & Applications.

[6]  H. Tyagi,et al.  Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector , 2009 .

[7]  Michael Conlon,et al.  Comparative Field Performance Study of Flat Plate and Heat Pipe Evacuated Tube Collectors (ETCs) for Domestic Water Heating Systems in a Temperate Climate , 2011 .

[8]  K. N. Sheeba,et al.  A comprehensive review on solar water heaters , 2011 .

[9]  Lovedeep Sahota,et al.  Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids , 2017 .

[10]  Sonia Leva,et al.  Thermal and electric performances of roll-bond flat plate applied to conventional PV modules for heat recovery , 2016 .

[11]  Saad Mekhilef,et al.  Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids , 2015 .

[12]  Qi Liang,et al.  Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm , 2015 .

[13]  I. Pop,et al.  A review of the applications of nanofluids in solar energy , 2013 .

[14]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[15]  H. Lee,et al.  TiO2−X based thermoelectric generators enabled by additive and layered manufacturing , 2017 .

[16]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[17]  M. Saeedinia,et al.  Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux , 2011 .

[18]  S. Ghasemi,et al.  NUMERICAL ANALYSIS OF PERFORMANCE OF SOLAR PARABOLIC TROUGH COLLECTOR WITH CU-WATER NANOFLUID , 2014 .

[19]  A. E. Kabeel,et al.  A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation , 2013 .

[20]  Marc A. Rosen,et al.  Integrated collector-storage solar water heater with extended storage unit , 2011 .

[21]  N. Sidik,et al.  Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: A review ☆ , 2016 .

[22]  Anil Kumar,et al.  Historical and recent development of photovoltaic thermal (PVT) technologies , 2015 .

[23]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[24]  N. Sidik,et al.  The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review , 2016 .

[25]  Samsher,et al.  A parametric study of a concentrating integral storage solar water heater for domestic uses , 2017 .

[26]  Gholamhassan Najafi,et al.  The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review , 2016 .

[27]  M. Mussard Solar energy under cold climatic conditions: A review , 2017 .

[28]  Clement Kleinstreuer,et al.  Computational Analysis of Nanofluid Cooling of High Concentration Photovoltaic Cells , 2014 .

[29]  Valan Arasu Amirtham,et al.  A review on preparation, characterization, properties and applications of nanofluids , 2016 .

[30]  K. V. Sharma,et al.  A Review of Thermophysical Properties of Water Based Composite Nanofluids , 2016 .

[31]  R. Viskanta Direct Absorption Solar Radiation Collection Systems , 1987 .

[32]  K. Kalidasa Murugavel,et al.  Performance study on single basin single slope solar still with different water nanofluids , 2015 .

[33]  Babita,et al.  Preparation and evaluation of stable nanofluids for heat transfer application: A review , 2016 .

[34]  T. Yousefi,et al.  An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors , 2012 .

[35]  Jinyi Guo,et al.  A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification , 2017 .

[36]  Mohd Zulkifly Abdullah,et al.  Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications , 2016 .

[37]  Tian Rui,et al.  Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes , 2017 .

[38]  Rose Amal,et al.  Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids , 2016 .

[39]  Vikas Kumar,et al.  Application of nanofluids in plate heat exchanger: A review , 2015 .

[40]  Xiaosong Zhang,et al.  Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system , 2011 .

[41]  A. E. Kabeel,et al.  Improving the performance of solar still by using nanofluids and providing vacuum , 2014 .

[42]  T. Yousefi,et al.  An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors , 2012 .

[43]  Ali Keshavarz,et al.  Energy and exergy analyses of a micro-steam CCHP cycle for a residential building , 2012 .

[44]  Soteris A. Kalogirou,et al.  The potential of solar industrial process heat applications , 2003 .

[45]  Fathollah Pourfayaz,et al.  Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid , 2017 .

[46]  Bong Jae Lee,et al.  Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption , 2012 .

[47]  Mohammad Charjouei Moghadam,et al.  Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers , 2016 .

[48]  A. G. Agwu Nnanna,et al.  Assessment of thermoelectric module with nanofluid heat exchanger , 2009 .

[49]  Saad Mekhilef,et al.  Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector , 2013 .

[50]  Ho Chang,et al.  Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators , 2011 .

[51]  T. Yousefi,et al.  An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector , 2012 .

[52]  P. Asinari,et al.  A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications , 2016 .

[53]  Clement Kleinstreuer,et al.  Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating , 2014 .

[54]  Lovedeep Sahota,et al.  Effect of Al2O3 nanoparticles on the performance of passive double slope solar still , 2016 .

[55]  Ali Jabari Moghadam,et al.  Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector , 2014 .

[56]  Andreas K. Athienitis,et al.  A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems , 2016 .

[57]  S. Wongwises,et al.  Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger , 2016 .

[58]  Siddig Omer,et al.  Advancements in hybrid photovoltaic systems for enhanced solar cells performance , 2015 .

[59]  E. Cañizales,et al.  Obtaining highly crystalline barium sulphate nanoparticles via chemical precipitation and quenching in absence of polymer stabilizers , 2015 .

[60]  Robert A. Taylor,et al.  A hybrid PV/T collector using spectrally selective absorbing nanofluids , 2017 .

[61]  Hui Li,et al.  Laboratory research on combined cooling, heating and power (CCHP) systems , 2009 .

[62]  A. Mahesh,et al.  Solar collectors and adsorption materials aspects of cooling system , 2017 .

[63]  Bechir Chaouachi,et al.  Optimization of the geometrical characteristics of an ICS solar water heater system using the two-level experience planning , 2016 .

[64]  Deniz Alta,et al.  Experimental investigation of three different solar air heaters: Energy and exergy analyses , 2010 .

[65]  Jie Zhu,et al.  A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement , 2016 .

[66]  O. Mahian,et al.  Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG– water nanofluids , 2015 .

[67]  V. Terekhov,et al.  The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids , 2010 .

[68]  Fernando Sebastián,et al.  Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation , 2013 .

[69]  Jiangjiang Wang,et al.  Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system , 2015 .

[70]  Kai Zhang,et al.  Review of nanofluids for heat transfer applications , 2009 .

[71]  S. C. Kaushik,et al.  Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology , 2012 .

[72]  Wei Yu,et al.  A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications of Ethylene Glycol – Water Based Nanofluids Dispersed with Multi Walled Carbon Nanotubes , 2024, INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT.

[73]  M. Tawfik Experimental studies of nanofluid thermal conductivity enhancement and applications: A review , 2017 .

[74]  Jinliang Xu,et al.  Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid , 2016 .

[75]  Nashaat N. Nassar,et al.  Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges , 2014 .

[76]  G. Xia,et al.  Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids , 2014 .

[77]  N. Sidik,et al.  Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review , 2016 .

[78]  P. K. Nagarajan,et al.  Nanofluids for Solar Collector Applications: A Review , 2014 .

[79]  Huan Zhang,et al.  Comparison of different heat transfer models for parabolic trough solar collectors , 2015 .

[80]  Linfeng Zhang,et al.  Performance of a thermoelectric cooling system integrated with a gravity-assisted heat pipe for cooling electronics , 2017 .

[81]  Priscilla Huen,et al.  Advances in hybrid solar photovoltaic and thermoelectric generators , 2017 .

[82]  Yahya Ajabshirchi,et al.  Experimental Study on Thermal Efficiency of Flat Plate Solar Collector Using TiO2/Water Nanofluid , 2013 .

[83]  Lun Jiang,et al.  Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector , 2016 .

[84]  N. Rahim,et al.  Laminar Mixed Convection in Inclined Triangular Enclosures Filled with Water Based Cu Nanofluid , 2012 .

[85]  Jie Ji,et al.  Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe , 2016 .

[86]  C. Zou,et al.  An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector , 2017 .

[87]  Tahereh B. Gorji,et al.  Thermal and exergy optimization of a nanofluid-based direct absorption solar collector , 2017 .

[88]  Chenghui Zhang,et al.  Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system , 2016 .

[89]  Junzhen Wu,et al.  Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller , 2014 .

[90]  A. Kasaeian,et al.  A review on the applications of nanofluids in solar energy systems , 2015 .

[91]  K. A. Antonopoulos,et al.  A detailed working fluid investigation for solar parabolic trough collectors , 2017 .

[92]  D. Wen,et al.  Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors , 2016 .

[93]  Alibakhsh Kasaeian,et al.  Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid , 2014 .

[94]  Flávio Augusto Sanzovo Fiorelli,et al.  Review of the mechanisms responsible for heat transfer enhancement using nanofluids , 2016 .

[95]  Gang Xiao,et al.  A review on solar stills for brine desalination , 2013 .

[96]  K. Cen,et al.  Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure , 2011 .

[97]  Ahmed Kadhim Hussein,et al.  Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview , 2016 .

[98]  Gianpiero Colangelo,et al.  Experimental test of an innovative high concentration nanofluid solar collector , 2015 .

[99]  Lovedeep Sahota,et al.  Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. , 2016 .

[100]  S. Mekhilef,et al.  Unsteady buoyancy-driven heat transfer enhancement of nanofluids in an inclined triangular enclosure , 2013 .

[101]  Milad Tajik Jamal-Abad,et al.  An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors , 2014 .

[102]  Yong Li,et al.  A comprehensive study on a novel concentric cylindrical thermoelectric power generation system , 2017 .

[103]  Enrico Zambolin,et al.  Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions , 2010 .

[104]  Hong Wang,et al.  A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules , 2017 .

[105]  M. Kalam,et al.  Numerical investigation of heat transfer enhancement of nanofluids in an inclined lid-driven triangular enclosure , 2011 .

[106]  Nathan Hordy,et al.  A stable carbon nanotube nanofluid for latent heat-driven volumetric absorption solar heating applications , 2015 .

[107]  Khalid H. Almitani,et al.  Solar liquid desiccant regeneration and nanofluids in evaporative cooling for greenhouse food production in Saudi Arabia , 2016 .

[108]  Qi Wang,et al.  A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications , 2014 .

[109]  A. Kabeel,et al.  Thermal solar water heater with H2O-Al2O3 nano-fluid in forced convection: experimental investigation , 2017 .

[110]  Muhammad Noor Afiq Witri Muhammad Yazid,et al.  A review on the application of nanofluids in vehicle engine cooling system , 2015 .

[111]  Fathollah Pourfayaz,et al.  Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system , 2016 .

[112]  Swellam W. Sharshir,et al.  Thermal performance and exergy analysis of solar stills – A review , 2017 .

[113]  S. C. Kaushik,et al.  Performance study of unglazed cylindrical solar collector for adsorption refrigeration system , 2013 .

[114]  Feng Zhao,et al.  Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector , 2013 .

[115]  Liu Yang,et al.  A comprehensive review on heat transfer characteristics of TiO2 nanofluids , 2017 .

[116]  Shuangfeng Wang,et al.  Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids , 2015 .

[117]  Niccolò Aste,et al.  Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector , 2015 .

[118]  J. J. Gallardo,et al.  Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights , 2017 .

[119]  S. Iniyan,et al.  Flat plate solar photovoltaic–thermal (PV/T) systems : A reference guide , 2015 .

[120]  Ruobing Liang,et al.  Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study , 2015 .

[121]  Jinhyun Kim,et al.  Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid , 2015 .

[122]  Mustafa Turkyilmazoglu,et al.  Performance of direct absorption solar collector with nanofluid mixture , 2016 .

[123]  Assensi Oliva,et al.  Wind speed effect on the flow field and heat transfer around a parabolic trough solar collector , 2014 .

[124]  Ali A. Badran Thermal performance of a cylindrical solar collector , 1991 .

[125]  Swellam W. Sharshir,et al.  Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study , 2017 .

[126]  Yuwen Zhang,et al.  Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers , 2014 .

[127]  Zhijia Yang,et al.  Comprehensive analysis of thermoelectric generation systems for automotive applications , 2017 .

[128]  O. Mahian,et al.  Performance analysis of a minichannel-based solar collector using different nanofluids , 2014 .

[129]  Wei An,et al.  Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter , 2016 .

[130]  Nasrudin Abd Rahim,et al.  Evaluating the Optical Properties of TiO2 Nanofluid for a Direct Absorption Solar Collector , 2015 .

[131]  Todd Otanicar,et al.  Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector , 2012 .

[132]  W. H. Azmi,et al.  A review of water heating system for solar energy applications , 2016 .

[133]  U. C. Arunachala,et al.  Solar parabolic trough collectors: A review on heat transfer augmentation techniques , 2017 .

[134]  S. Paras,et al.  INVESTIGATING THE EFFICACY OF NANOFLUIDS AS COOLANTS IN PLATE HEAT EXCHANGERS (PHE) , 2009 .

[135]  Hwai Chyuan Ong,et al.  Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review , 2017 .

[136]  Antonio C. M. Sousa,et al.  Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review , 2017 .

[137]  Yu-Chen Yuan,et al.  Thermal analysis of film photovoltaic cell subjected to dual laser beam irradiation , 2015 .

[138]  Saad Mekhilef,et al.  Double diffusive Buoyancy induced flow in a triangular cavity with corrugated bottom wall: Effects of geometrical parameters , 2013 .

[139]  Kamaruzzaman Sopian,et al.  Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors , 2011 .

[140]  Saad Mekhilef,et al.  A cascade nanofluid-based PV/T system with optimized optical and thermal properties , 2016 .

[141]  Mohammed Ali Berawi,et al.  Advanced nanomaterials in oil and gas industry: Design, application and challenges , 2017 .

[142]  Kurt Kornbluth,et al.  A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions , 2017 .

[143]  Robert A. Taylor,et al.  Assessment of solar and wind resource synergy in Australia , 2017 .

[144]  Lingai Luo,et al.  Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design , 2012 .

[145]  Xiaosong Zhang,et al.  Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator , 2015, Nanomaterials.

[146]  Honghyun Cho,et al.  Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid , 2017 .

[147]  R. Kumar,et al.  A review on thermophysical properties of nanofluids and heat transfer applications , 2017 .

[148]  J. Minardi,et al.  Performance of a “black” liquid flat-plate solar collector☆ , 1975 .

[149]  A. E. Kabeel,et al.  Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector , 2014 .

[150]  Carlo Renno,et al.  Optimization of a concentrating photovoltaic thermal (CPV/T) system used for a domestic application , 2014 .

[151]  S. Mekhilef,et al.  Augmentation of natural convection heat transfer in triangular shape solar collector by utilizing water based nanofluids having a corrugated bottom wall , 2014 .

[152]  Zhao Li,et al.  Experimental study of a control strategy for a cascade air source heat pump water heater , 2017 .

[153]  Y. Hardalupas,et al.  Sedimentation in nanofluids during a natural convection experiment , 2016 .

[154]  A. Alemrajabi,et al.  Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector , 2016 .

[155]  C. A. N. Castro,et al.  Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review , 2016 .

[156]  Mohd. Kaleem Khan,et al.  Performance enhancement of solar collectors—A review , 2015 .

[157]  M. Venkatesan,et al.  Review on nanofluids characterization, heat transfer characteristics and applications , 2016 .

[158]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[159]  Runsheng Tang,et al.  Solar thermal utilization in China , 2004 .

[160]  Xi Zhuo Jiang,et al.  Evaluation of combined cooling, heating and power (CCHP) systems with energy storage units at different locations , 2016 .

[161]  L. Salgado Conrado,et al.  Thermal performance of parabolic trough solar collectors , 2017 .

[162]  S. Wongwises,et al.  An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime , 2010 .

[163]  Luigi Pietro Maria Colombo,et al.  Tiles as solar air heater to support a heat pump for residential air conditioning , 2016 .

[164]  Todd Otanicar,et al.  Theoretical Analysis and Testing of Nanofluids-Based Solar Photovoltaic/Thermal Hybrid Collector , 2015 .

[165]  Manoj Kumar Sinha,et al.  Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication , 2017 .

[166]  Andrea Giglio,et al.  Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system , 2017 .

[167]  Lin Lu,et al.  Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment , 2011 .

[168]  S. Wongwises,et al.  Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler , 2016 .

[169]  M. A. Karim,et al.  An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications , 2016 .

[170]  Wang Hui,et al.  Comparative study on the performance of a new solar air collector with different surface shapes , 2017 .

[171]  Robert A. Taylor,et al.  Characterization of light-induced, volumetric steam generation in nanofluids , 2012 .

[172]  Saeed Zeinali Heris,et al.  Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) , 2014 .

[173]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[174]  M. Jaroniec,et al.  Synthesis, characterization, properties, and applications of nanosized photocatalytic materials , 2012 .

[175]  Gianpiero Colangelo,et al.  A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids , 2013 .

[176]  Neven Duić,et al.  Appropriate Integration of Geothermal Energy Sources by Pinch Approach: Case Study of Croatia , 2016 .

[177]  Saeed Zeinali Heris,et al.  Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger , 2017 .

[178]  Magdalena Nemś,et al.  Investigation of thermo-hydraulic performance of concentrated solar air-heater with internal multiple-fin array , 2013 .

[179]  Elumalai Natarajan,et al.  Role of nanofluids in solar water heater , 2009 .

[180]  Christos N. Markides,et al.  Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors , 2016 .

[181]  Lovedeep Sahota,et al.  Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger , 2017 .

[182]  P. Sharma,et al.  Study of Cylindrical Honeycomb Solar Collector , 2014 .

[183]  Mohamed Gadalla,et al.  Thermo-economic analysis of an integrated solar power generation system using nanofluids , 2017 .

[184]  P. Ghosh,et al.  A review on hybrid nanofluids: Recent research, development and applications , 2015 .

[185]  Abraham Kribus,et al.  Experimental evaluation of a non-isothermal high temperature solar particle receiver , 2004 .

[186]  Ibrahim M. Al-Helal,et al.  Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer , 2016 .

[187]  Ruzhu Wang,et al.  Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater , 2007 .

[188]  Mehmet F. Orhan,et al.  Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies , 2015 .

[189]  Johane Bracamonte,et al.  Effect of the collector tilt angle on thermal efficiency and stratification of passive water in glass evacuated tube solar water heater , 2015 .

[190]  Alan S. Fung,et al.  Performance of two domestic solar water heaters with drain water heat recovery units: Simulation and experimental investigation , 2015 .

[191]  Tahereh B. Gorji,et al.  A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs) , 2017 .

[192]  Graham L. Morrison,et al.  Long term performance of evacuated tubular solar water heaters in Sydney, Australia , 1984 .

[193]  Alibakhsh Kasaeian,et al.  Performance evaluation and nanofluid using capability study of a solar parabolic trough collector , 2015 .

[194]  K. Goudarzi,et al.  An experimental investigation on the simultaneous effect of CuO–H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector , 2014 .

[195]  James E. Pacheco,et al.  Demonstration of Solar-Generated Electricity on Demand: The Solar Two Project* , 2001 .

[196]  Yongping Yang,et al.  Comparison in net solar efficiency between the use of concentrating and non-concentrating solar collectors in solar aided power generation systems , 2015 .

[197]  M. Ali,et al.  Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives , 2016 .

[198]  Ningbo Zhao,et al.  A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator , 2016 .

[199]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[200]  Hasimah Abdul Rahman,et al.  Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review , 2015 .

[201]  F. Boyaghchi,et al.  Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts , 2017 .

[202]  Md. Rafiqul Islam,et al.  Review on solar water heater collector and thermal energy performance of circulating pipe , 2011 .

[203]  Y. Xuan,et al.  The effect of surfactants on heat transfer feature of nanofluids , 2013 .

[204]  Saad Mekhilef,et al.  Environmental and exergy benefit of nanofluid-based hybrid PV/T systems , 2016 .

[205]  Robert A. Taylor,et al.  Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector , 2015 .

[206]  Fahad A. Al-Sulaiman,et al.  Optical properties of various nanofluids used in solar collector: A review , 2017 .

[207]  Farzad Veysi,et al.  Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector , 2016 .

[208]  Hwai Chyuan Ong,et al.  An overview on current application of nanofluids in solar thermal collector and its challenges , 2016 .

[209]  Masood Ebrahimi,et al.  Integrated energy–exergy optimization of a novel micro-CCHP cycle based on MGT–ORC and steam ejector refrigerator , 2016 .

[210]  Zhimin Li,et al.  Assessment of uncertainty in mean heat loss coefficient of all glass evacuated solar collector tube testing , 2006 .

[211]  A. Kabeel,et al.  A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation: Part I. A numerical investigation , 2014 .

[212]  P. V. Walke,et al.  Heat transfer characteristics in nanofluid—A review , 2017 .

[213]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[214]  A. Zamzamian,et al.  Experimental Study of the Performance of a Flat-Plate Collector Using Cu–Water Nanofluid , 2013 .

[215]  Tin-Tai Chow,et al.  A Review on Photovoltaic/Thermal Hybrid Solar Technology , 2010, Renewable Energy.

[216]  D. Infield,et al.  Design optimization of thermoelectric devices for solar power generation , 1998 .

[217]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[218]  Vajiheh Sabeti,et al.  Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid , 2015 .

[219]  Gang Xu,et al.  Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules , 2013 .

[220]  A. S. Abdullah,et al.  Performance of cylindrical plastic solar collectors for air heating , 2014 .

[221]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .