On yield consideration for the design of redundant programmable logic arrays

Redundancy techniques have been applied to conventional programmable logic arrays (PLAs) to allow for the repair of defective chips. When the redundancy technique is implemented in a VLSI or WSI chip design, the increased cost is proportional to the increased chip silicon area, and the additional spare lines can increase the silicon area and propagation delay. However, if the provided redundancy can be efficiently utilized to repair defective chip; then the additional spare lines may increase rather than decrease the chip yields. The possibility of yield enhancement through redundant design is analyzed, showing that the chip yield is increased significantly. >

[1]  C. Stapper The effects of wafer to wafer defect density variations on integrated circuit defect and fault distributions , 1985 .

[2]  C. H. Stapper,et al.  Yield Model for Productivity Optimization of VLSI Memory Chips with Redundancy and Partially Good Product , 1980, IBM J. Res. Dev..

[3]  Wilfried Daehn,et al.  A Hardware Approach to Self-Testing of Large Programmable Logic Arrays , 1981, IEEE Transactions on Computers.

[4]  Renato Stefanelli,et al.  Reconfigurable architectures for VLSI processing arrays , 1986 .

[5]  S. Gai,et al.  Fault detection in programmable logic arrays , 1986, Proceedings of the IEEE.

[6]  T. Masuhara,et al.  A Hi-CMOSII 8Kx8 bit static RAM , 1982, IEEE Journal of Solid-State Circuits.

[7]  Chin-Long Wey,et al.  On the design of a redundant programmable logic array (RPLA) , 1987 .

[8]  Charles W. Cha A Testing Strategy for PLAs , 1978, 15th Design Automation Conference.

[9]  W.R. Moore,et al.  A review of fault-tolerant techniques for the enhancement of integrated circuit yield , 1986, Proceedings of the IEEE.

[10]  Leon I. Maissel,et al.  An Introduction to Array Logic , 1975, IBM J. Res. Dev..

[11]  C.-L. Way Fault location in repairable programmable logic arrays , 1989, Proceedings. 'Meeting the Tests of Time'., International Test Conference.

[12]  R. Cenker,et al.  A fault-tolerant 64K dynamic RAM , 1979, 1979 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[13]  D.K. Pradhan,et al.  Yield and performance enhancement through redundancy in VLSI and WSI multiprocessor systems , 1986, Proceedings of the IEEE.

[14]  James E. Smith Detection of Faults in Programmable Logic Arrays , 1979, IEEE Transactions on Computers.

[15]  Carlo H. Séquin,et al.  Design and Application of Self-Testing Comparators Implemented with MOS PLA's , 1984, IEEE Transactions on Computers.

[16]  Sudhakar M. Reddy,et al.  On the Design of Random Pattern Testable PLAs , 1986, ITC.

[17]  Daniel L. Ostapko,et al.  Fault Analysis and Test Generation for Programmable Logic Arrays (PLA's) , 1979, IEEE Transactions on Computers.

[18]  K. S. Ramanatha,et al.  A Design for Complete Testability of Programmable Logic Arrays , 1982, ITC.

[19]  S. E. Schuster Multiple word/bit line redundancy for semiconductor memories , 1978 .

[20]  Kozo Kinoshita,et al.  A Design of Programmable Logic Arrays with Universal Tests , 1981, IEEE Transactions on Computers.

[21]  Hideo Fujiwara,et al.  Implementing a Built-In Self-Test PLA Design , 1985, IEEE Design & Test of Computers.

[22]  R.P. Cenker,et al.  A fault-tolerant 64K dynamic random-access memory , 1979, IEEE Transactions on Electron Devices.

[23]  Eric Lindbloom,et al.  A Heuristic Test-Pattern Generator for Programmable Logic Arrays , 1980, IBM J. Res. Dev..