Communicability in temporal networks.

A first-principles approach to quantify the communicability between pairs of nodes in temporal networks is proposed. It corresponds to the imaginary-time propagator of a quantum random walk in the temporal network, which accounts for unique structural and temporal characteristics of both streaming and nonstreaming temporal networks. The influence of the system's temperature on the perdurability of information and how the communicability identifies patterns of communication hidden in the temporal and topological structure of the networks are also studied for synthetic and real-world systems.

[1]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[2]  Bülent Yener,et al.  Graph Theoretic and Spectral Analysis of Enron Email Data , 2005, Comput. Math. Organ. Theory.

[3]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  A. Barrat,et al.  Dynamical and bursty interactions in social networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Alain Barrat,et al.  Social network dynamics of face-to-face interactions , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Peter Grindrod,et al.  A Matrix Iteration for Dynamic Network Summaries , 2013, SIAM Rev..

[8]  Esteban Moro Egido,et al.  The dynamical strength of social ties in information spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Kun Zhao,et al.  Entropy of Dynamical Social Networks , 2011, PloS one.

[10]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Ernesto Estrada,et al.  The Structure of Complex Networks: Theory and Applications , 2011 .

[12]  Igor M. Sokolov,et al.  Unfolding accessibility provides a macroscopic approach to temporal networks , 2012, Physical review letters.

[13]  Eric Bach,et al.  Noninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs , 2012, 1206.2999.

[14]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[15]  Alain Barrat,et al.  Modeling temporal networks using random itineraries , 2013, Physical review letters.

[16]  T. S. Evans,et al.  Complex networks , 2004 .

[17]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[18]  Ciro Cattuto,et al.  What's in a crowd? Analysis of face-to-face behavioral networks , 2010, Journal of theoretical biology.

[19]  Michele Benzi,et al.  Total communicability as a centrality measure , 2013, J. Complex Networks.

[20]  Harry Eugene Stanley,et al.  Calling patterns in human communication dynamics , 2013, Proceedings of the National Academy of Sciences.

[21]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[22]  V Latora,et al.  Small-world behavior in time-varying graphs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Romualdo Pastor-Satorras,et al.  Random walks on temporal networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Ernesto Estrada,et al.  Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  M. Nakahara,et al.  Designing robust unitary gates: Application to concatenated composite pulses , 2011, 1105.0744.

[27]  A. Barrat,et al.  Dynamical Patterns of Cattle Trade Movements , 2011, PloS one.

[28]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[29]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[30]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[31]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[32]  Murray Rudman,et al.  Global parametric solutions of scalar transport , 2008, J. Comput. Phys..

[33]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[34]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .