Impact of core losses on parameter identification of three-phase induction machines

Accurate knowledge about the machine parameters is of utmost importance for high performance speed control of induction machines. Out of all the various machine parameters, the stator and the rotor resistances are strongly dependent on the machine temperature, which is difficult to predict without any appropriate sensor mounted inside the machine. Online identification of these parameters requires correct knowledge about the machine magnetic parameters, which are the magnetising and leakage inductances. Moreover, estimation of the resistive parameters is affected by core loss in the machine. The magnetic parameters are almost unaffected by core losses and can be accurately calculated offline at different operating flux levels with known input variables and resistive parameters. A ‘variable flux current limit test’ is proposed to determine the parameters at various input frequencies and operating fluxes. The proposed identification method can be implemented with the same hardware available for normal operation of the drive. Various simulations and experiments performed on practical machines validate the proposed concept.

[1]  Chris Gerada,et al.  Optimized Commissioning Method for Enhanced Vector Control of High-Power Induction Motor Drives , 2009, IEEE Transactions on Industrial Electronics.

[2]  E. Levi,et al.  A Review of RFO Induction Motor Parameter Estimation Techniques , 2002, IEEE Power Engineering Review.

[3]  M. W. Dunnigan,et al.  Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms , 2010 .

[4]  Rong-Ching Wu,et al.  Parameter Identification of Induction Machine With a Starting No-Load Low-Voltage Test , 2012, IEEE Transactions on Industrial Electronics.

[5]  Joachim Holtz,et al.  Sensorless Control of Induction Machines - With or Without Signal Injection? , 2006, IEEE Trans. Ind. Electron..

[6]  Ieee Standards Board IEEE standard test procedure for polyphase induction motors and generators , 1992 .

[7]  Ying Wu,et al.  Induction-motor stator and rotor winding temperature estimation using signal injection method , 2006, IEEE Transactions on Industry Applications.

[8]  L. Lupsa-Tataru,et al.  A Flux-Based Expression of Induction Machine Magnetizing Inductance , 2010, IEEE Transactions on Energy Conversion.

[9]  Debashis Chatterjee A Simple Leakage Inductance Identification Technique for Three-Phase Induction Machines Under Variable Flux Condition , 2012, IEEE Transactions on Industrial Electronics.

[10]  Mauro Zigliotto,et al.  Automatic procedure for induction motor parameter estimation at standstill , 2012 .

[11]  Slobodan N. Vukosavic,et al.  Speed-Sensorless AC Drives With the Rotor Time Constant Parameter Update , 2007, IEEE Transactions on Industrial Electronics.

[12]  Veran V. Vasic,et al.  A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives , 2003 .

[13]  Matthew W. Dunnigan,et al.  Online identification of induction machine electrical parameters for vector control loop tuning , 2003, IEEE Trans. Ind. Electron..

[14]  C. Schauder,et al.  Adaptive speed identification for vector control of induction motors without rotational transducers , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[15]  U. Drofenik,et al.  A General Scheme for Calculating Switching- and Conduction-Losses of Power Semiconductors in Numerical Circuit Simulations of Power Electronic Systems; International Power Electronics Conference; ; IPEC-Niigata 2005 , 2005 .

[16]  K. Matsuse,et al.  Speed sensorless field oriented control of induction motor with rotor resistance adaptation , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[17]  Hamid A. Toliyat,et al.  Neural-Network-Based Parameter Estimations of Induction Motors , 2008, IEEE Transactions on Industrial Electronics.

[18]  Bin Lu,et al.  Impaired-Cooling-Condition Detection Using DC-Signal Injection for Soft-Starter-Connected Induction Motors , 2009, IEEE Transactions on Industrial Electronics.

[19]  Slobodan N. Vukosavic,et al.  A method for magnetizing curve identification in rotor flux oriented induction machines , 2000 .

[20]  Kwanghee Nam,et al.  A vector control scheme for EV induction motors with a series iron loss model , 1998, IEEE Trans. Ind. Electron..

[21]  B. Karanayil,et al.  Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive , 2007, IEEE Transactions on Industrial Electronics.

[22]  Francisco Jurado,et al.  Shuffled frog-leaping algorithm for parameter estimation of a double-cage asynchronous machine , 2012 .

[23]  Mohamed S. Zaky,et al.  Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives , 2009, IEEE Transactions on Industrial Electronics.

[24]  Giansalvo Cirrincione,et al.  Constrained minimization for parameter estimation of induction motors in saturated and unsaturated conditions , 2005, IEEE Transactions on Industrial Electronics.

[25]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[26]  Debashis Chatterjee A Novel Magnetizing-Curve Identification and Computer Storage Technique for Induction Machines Suitable for Online Application , 2011, IEEE Transactions on Industrial Electronics.

[27]  José Luiz Silvino,et al.  An improved estimation of the induction machine leakage inductances , 1999, IEEE Trans. Ind. Electron..