Generalized 2-absorbing and strongly generalized 2-absorbing second submodules

Let \(R\) be a commutative ring with identity. A proper submodule \(N\) of an \(R\)-module \(M\) is said to be a 2-absorbing submodule of  \(M\) if whenever \(abm \in N\) for some \(a, b \in R\) and \(m \in M\), then \(am \in N\) or \(bm \in N\) or \(ab \in (N :_R M)\). In [3], the authors introduced two dual notion of 2-absorbing submodules (that is, 2-absorbing and strongly 2-absorbing second submodules) of \(M\) and investigated some properties of these classes of modules. In this paper, we will introduce the concepts of generalized 2-absorbing and strongly generalized 2-absorbing second submodules of modules over a commutative ring and obtain some related results.

[1]  H. Ansari-Toroghy,et al.  2-absorbing and strongly 2-absorbing secondary submodules of modules , 2016, 1610.00565.

[2]  H. Ansari-Toroghy,et al.  Some generalizations of second submodules , 2016, 1609.08054.

[3]  S. S. Pourmortazavi,et al.  On the P-interiors of submodules of Artinian modules , 2016 .

[4]  Ayman Badawi,et al.  ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS , 2014 .

[5]  M. Alkan,et al.  The dual notion of the prime radical of a module , 2013 .

[6]  H. Ansari-Toroghy,et al.  ON THE DUAL NOTION OF PRIME RADICALS OF SUBMODULES , 2013 .

[7]  H. Ansari-Toroghy,et al.  Fully idempotent and coidempotent modules , 2012 .

[8]  H. Ansari-Toroghy,et al.  On the Dual Notion of Prime Submodules , 2012 .

[9]  S. Payrovi,et al.  On 2-Absorbing Submodules , 2012 .

[10]  A. Darani,et al.  2-Absorbing and Weakly 2-Absorbing Submodules , 2012 .

[11]  H. Ansari-Toroghy,et al.  On the Dual Notion of Multiplication Modules , 2011 .

[12]  Muslim Baig Primary Decomposition and Secondary Representation of Modules over a Commutative Ring , 2009 .

[13]  Ayman Badawi On 2-absorbing ideals of commutative rings , 2007, Bulletin of the Australian Mathematical Society.

[14]  Overtoun M. G. Jenda,et al.  Abelian Groups, Rings, Modules, and Homological Algebra , 2006 .

[15]  W. Heinzer,et al.  COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS: IRREDUCIBILITY IN THE QUOTIENT FIELD , 2005 .

[16]  S. Yassemi The dual notion of prime submodules , 2001 .

[17]  A. Azizi,et al.  ON PRIME SUBMODULES , 1999 .

[18]  S. Yassemi The dual notion of the cyclic modules , 1998 .

[19]  L. Fuchs COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS : , 2006 .