Tracer diffusion in a sea of polymers with binding zones: mobile vs. frozen traps.

We use molecular dynamics simulations to investigate the tracer diffusion in a sea of polymers with specific binding zones for the tracer. These binding zones act as traps. Our simulations show that the tracer can undergo normal yet non-Gaussian diffusion under certain circumstances, e.g., when the polymers with traps are frozen in space and the volume fraction and the binding strength of the traps are moderate. In this case, as the tracer moves, it experiences a heterogeneous environment and exhibits confined continuous time random walk (CTRW) like motion resulting in a non-Gaussian behavior. Also the long time dynamics becomes subdiffusive as the number or the binding strength of the traps increases. However, if the polymers are mobile then the tracer dynamics is Gaussian but could be normal or subdiffusive depending on the number and the binding strength of the traps. In addition, with increasing binding strength and number of polymer traps, the probability of the tracer being trapped increases. On the other hand, removing the binding zones does not result in trapping, even at comparatively high crowding. Our simulations also show that the trapping probability increases with the increasing size of the tracer and for a bigger tracer with the frozen polymer background the dynamics is only weakly non-Gaussian but highly subdiffusive. Our observations are in the same spirit as found in many recent experiments on tracer diffusion in polymeric materials and question the validity of using Gaussian theory to describe diffusion in a crowded environment in general.

[1]  Andrey G. Cherstvy,et al.  Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. , 2016, Physical chemistry chemical physics : PCCP.

[2]  K. L. Sebastian,et al.  Diffusing Diffusivity: Survival in a Crowded Rearranging and Bounded Domain. , 2016, The journal of physical chemistry. B.

[3]  S. Egelhaaf,et al.  Time- and ensemble-averages in evolving systems: the case of Brownian particles in random potentials. , 2016, Physical chemistry chemical physics : PCCP.

[4]  K. L. Sebastian,et al.  Diffusion in a Crowded, Rearranging Environment. , 2016, The journal of physical chemistry. B.

[5]  Yu Tian,et al.  Probing Non-Gaussianity in Confined Diffusion of Nanoparticles. , 2016, The journal of physical chemistry letters.

[6]  F. Uhlík,et al.  The drag of the tails: Diffusion of sticky nanoparticles in dilute polymer solutions. , 2015, The Journal of chemical physics.

[7]  Y. Rabin,et al.  Particle dynamics in fluids with random interactions. , 2015, The Journal of chemical physics.

[8]  Andrey G. Cherstvy,et al.  Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments , 2015, 1508.02029.

[9]  C. Vanderzande,et al.  Dynamics of a polymer in an active and viscoelastic bath. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Andrey G. Cherstvy,et al.  Non-universal tracer diffusion in crowded media of non-inert obstacles. , 2014, Physical chemistry chemical physics : PCCP.

[11]  Andrey G. Cherstvy,et al.  Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size. , 2014, Soft matter.

[12]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Matthew P. Jacobson,et al.  A New Coarse-Grained Model for E. coli Cytoplasm: Accurate Calculation of the Diffusion Coefficient of Proteins and Observation of Anomalous Diffusion , 2014, PloS one.

[14]  S. Granick,et al.  Nanoparticle diffusion in methycellulose thermoreversible association polymer , 2014 .

[15]  B. Sung,et al.  Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? , 2014, The journal of physical chemistry. B.

[16]  Gary W Slater,et al.  Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. , 2014, Physical review letters.

[17]  M. Weiss,et al.  Probing the type of anomalous diffusion with single-particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[18]  G. Grest,et al.  Nanoparticle diffusion in polymer nanocomposites. , 2014, Physical review letters.

[19]  S. Granick,et al.  Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion. , 2013, ACS nano.

[20]  S. Egelhaaf,et al.  Colloids in light fields: Particle dynamics in random and periodic energy landscapes , 2013, 1308.5632.

[21]  H. Butt,et al.  Complex tracer diffusion dynamics in polymer solutions. , 2013, Physical review letters.

[22]  Arindam Chowdhury,et al.  Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: insight from single-molecule tracer diffusion dynamics. , 2013, The journal of physical chemistry. B.

[23]  R. Metzler,et al.  Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions , 2013 .

[24]  S. Karmakar,et al.  Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. , 2013, The Journal of chemical physics.

[25]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[26]  R. Chakrabarti,et al.  Tracer diffusion in a crowded cylindrical channel. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Michael A Thompson,et al.  Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. , 2012, Biophysical journal.

[28]  S. Granick,et al.  When Brownian diffusion is not Gaussian. , 2012, Nature materials.

[29]  G. Parisi,et al.  Dimensional study of the caging order parameter at the glass transition , 2012, Proceedings of the National Academy of Sciences.

[30]  R. Chakrabarti Dynamics of end-to-end loop formation for an isolated chain in viscoelastic fluid , 2012, 1204.1026.

[31]  O. Lenz,et al.  Simulational study of anomalous tracer diffusion in hydrogels , 2010, 1012.1510.

[32]  H. Fazli,et al.  Three-dimensional Brownian diffusion of rod-like macromolecules in the presence of randomly distributed spherical obstacles: molecular dynamics simulation. , 2010, The Journal of chemical physics.

[33]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[34]  R. Chakrabarti Dynamical disorder in presence of exponential sink , 2010 .

[35]  Adrian H. Elcock,et al.  Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm , 2010, PLoS Comput. Biol..

[36]  Sung Chul Bae,et al.  Anomalous yet Brownian , 2009, Proceedings of the National Academy of Sciences.

[37]  K. Schweizer,et al.  Dynamics of tracer particles in gel-like media. , 2008, The journal of physical chemistry. B.

[38]  J. van der Gucht,et al.  Brownian particles in transient polymer networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  A. Verkman,et al.  Crowding effects on diffusion in solutions and cells. , 2008, Annual review of biophysics.

[40]  D. Reichman,et al.  Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. , 2007, Molecular cell.

[41]  M. Michels,et al.  Non-Gaussian nature of glassy dynamics by cage to cage motion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  K. Schweizer,et al.  Non-Gaussian effects, space-time decoupling, and mobility bifurcation in glassy hard-sphere fluids and suspensions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  David R Reichman,et al.  On stochastic models of dynamic disorder. , 2006, The journal of physical chemistry. B.

[44]  R. Chakrabarti,et al.  Rate processes with dynamical disorder: a direct variational approach. , 2006, The Journal of chemical physics.

[45]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[46]  Daniel S. Banks,et al.  Anomalous diffusion of proteins due to molecular crowding. , 2005, Biophysical journal.

[47]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[48]  D. Weitz,et al.  Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.

[49]  Robert Zwanzig,et al.  Dynamical disorder: Passage through a fluctuating bottleneck , 1992 .

[50]  Robert Zwanzig,et al.  Rate processes with dynamical disorder , 1990 .

[51]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[52]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[53]  Subrahmanyan Chandrasekhar,et al.  Brownian Motion, Dynamical Friction, and Stellar Dynamics , 1949 .