Mapping Height and Aboveground Biomass of Mangrove Forests on Hainan Island Using UAV-LiDAR Sampling

[1]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[2]  E. Næsset,et al.  Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference , 2018 .

[3]  D. Mao,et al.  Mapping China’s mangroves based on an object-oriented classification of Landsat imagery , 2014, Wetlands.

[4]  M. Simard,et al.  Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM , 2013 .

[5]  Zhenfeng Shao,et al.  Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data , 2019, Remote. Sens..

[6]  Yanjun Su,et al.  Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas , 2016 .

[7]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[8]  Hartono,et al.  Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing , 2016 .

[9]  Dieu Tien Bui,et al.  Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data , 2018 .

[10]  Shogo Kato,et al.  Common allometric equations for estimating the tree weight of mangroves , 2005, Journal of Tropical Ecology.

[11]  A. Ellison,et al.  A World Without Mangroves? , 2007, Science.

[12]  N. Clinton,et al.  A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform , 2017 .

[13]  Qihao Weng,et al.  Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[14]  O. Mutanga,et al.  Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species , 2017 .

[15]  Mingming Jia,et al.  Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China , 2016, Remote. Sens..

[16]  E. Mougin,et al.  Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana , 1998, Oecologia.

[17]  Stephen V. Stehman,et al.  Thematic map accuracy assessment from the perspective of finite population sampling , 1995 .

[18]  W. Gong,et al.  Allometry and partitioning of the mangrove, Rhizophora apiculata , 2004 .

[19]  P. Gong,et al.  Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama , 2004 .

[20]  Hamdan Omar,et al.  Modelling individual tree aboveground biomass using discrete return Lidar in lowland Dipterocarp forest of Malaysia , 2017 .

[21]  G. Lin,et al.  Recent progresses in mangrove conservation, restoration and research in China , 2009 .

[22]  Alfonso Fernández-Manso,et al.  SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[23]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[24]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[25]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[26]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[27]  Hongxing Liu,et al.  Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images , 2015, Remote. Sens..

[28]  Remo Bertani,et al.  Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[29]  Deren Li,et al.  Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation , 2019, Remote Sensing of Environment.

[30]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[31]  J. Kovacs,et al.  An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme , 2017, Environmental Monitoring and Assessment.

[32]  B. Wylie,et al.  Analysis of Dynamic Thresholds for the Normalized Difference Water Index , 2009 .

[33]  Swapan Kumar Sarker,et al.  Timber species grouping in Bangladesh: linking wood properties , 2013, Wood Science and Technology.

[34]  Keqi Zhang,et al.  Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data , 2006 .

[35]  Stuart R. Phinn,et al.  Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using Multi-Resolution Image Datasets , 2015, Remote. Sens..

[36]  Colin D. Woodroffe,et al.  Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation , 2018 .

[37]  Run Wang,et al.  Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species , 2018, Remote. Sens..

[38]  B. Clough,et al.  Allometric relationships for estimating above-ground biomass in six mangrove species , 1989 .

[39]  Le Wang,et al.  A review of remote sensing for mangrove forests: 1956–2018 , 2019, Remote Sensing of Environment.

[40]  Mahmood Hossain,et al.  Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh , 2015, Wetlands Ecology and Management.

[41]  N. Coops,et al.  Prediction of Wood Fiber Attributes from LiDAR-Derived Forest Canopy Indicators , 2013 .

[42]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[43]  S. Hamilton,et al.  Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21) , 2014, 1412.0722.

[44]  Liviu Theodor Ene,et al.  Large-area hybrid estimation of aboveground biomass in interior Alaska using airborne laser scanning data , 2018 .

[45]  Q. Guo,et al.  An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China , 2017 .

[46]  A. Skidmore,et al.  Important LiDAR metrics for discriminating forest tree species in Central Europe , 2018 .

[47]  Severino G. Salmo,et al.  The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern , 2010, PloS one.

[48]  Weitao Chen,et al.  Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China , 2014 .

[49]  Wenzhi Cao,et al.  Assessing changes of mangrove forest in a coastal region of southeast China using multi-temporal satellite images , 2018, Estuarine, Coastal and Shelf Science.

[50]  P. Saenger,et al.  Pantropical trends in mangrove above-ground biomass and annual litterfall , 1993, Oecologia.

[51]  Lin Cao,et al.  Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[52]  Temilola Fatoyinbo,et al.  Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta , 2018 .

[53]  Liviu Theodor Ene,et al.  Use of partial-coverage UAV data in sampling for large scale forest inventories , 2017 .

[54]  Stuart R. Phinn,et al.  Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach , 2018 .

[55]  S. Robeson,et al.  Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data , 2016 .

[56]  Caixia Liu,et al.  Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China , 2019, Remote Sensing of Environment.

[57]  Daniel A. Friess,et al.  Mangrove biomass estimation in Southwest Thailand using machine learning , 2013 .

[58]  Francisca Rocha de Souza Pereira,et al.  Reducing Uncertainty in Mapping of Mangrove Aboveground Biomass Using Airborne Discrete Return Lidar Data , 2018, Remote. Sens..

[59]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[60]  Lien T. H. Pham,et al.  Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms , 2017 .

[61]  Peter M. Atkinson,et al.  Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8 , 2015, Remote. Sens..

[62]  Onisimo Mutanga,et al.  Spectral Discrimination of Insect Defoliation Levels in Mopane Woodland Using Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[63]  Lei Wang,et al.  Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[64]  Le Wang,et al.  Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges , 2019, Remote Sensing of Environment.

[65]  M. Simard,et al.  A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia , 2008 .

[66]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[67]  Cecep Kusmana,et al.  Allometric models for above- and below-ground biomass of Sonneratia spp. , 2018, Global Ecology and Conservation.

[68]  Le Wang,et al.  Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance , 2009 .

[69]  Ashbindu Singh,et al.  Status and distribution of mangrove forests of the world using earth observation satellite data , 2011 .

[70]  A. Manica,et al.  Predicting Global Patterns in Mangrove Forest Biomass , 2014 .

[71]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[72]  M. Ball,et al.  Factors influencing biodiversity and distributional gradients in mangroves , 1998 .

[73]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[74]  Sassan Saatchi,et al.  Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them , 2019, Surveys in Geophysics.

[75]  Severino G. Salmo,et al.  Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery , 2017 .

[76]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[77]  Bertrand Michel,et al.  Correlation and variable importance in random forests , 2013, Statistics and Computing.