Semiclassical spectral asymptotics for a two-dimensional magnetic Schr\"odinger operator: The case of discrete wells

We consider a magnetic Schr\"odinger operator $H^h$, depending on the semiclassical parameter $h>0$, on a two-dimensional Riemannian manifold. We assume that there is no electric field. We suppose that the minimal value $b_0$ of the magnetic field $b$ is strictly positive, and there exists a unique minimum point of $b$, which is non-degenerate. The main result of the paper is a complete asymptotic expansion for the low-lying eigenvalues of the operator $H^h$ in the semiclassical limit. We also apply these results to prove the existence of an arbitrary large number of spectral gaps in the semiclassical limit in the corresponding periodic setting.

[1]  Bernard Helffer,et al.  Spectral Methods in Surface Superconductivity , 2010 .

[2]  N. Raymond Sharp Asymptotics for the Neumann Laplacian with Variable Magnetic Field: Case of Dimension 2 , 2008, 0806.1309.

[3]  B. Helffer,et al.  Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: Analysis near the bottom , 2008, 0801.4460.

[4]  B. Helffer,et al.  Semiclassical asymptotics and gaps in the spectra of periodic Schr , 2006, math/0601366.

[5]  S. Dobrokhotov,et al.  The Spectral Asymptotics of the Two-Dimensional Schr\ , 2004, math-ph/0411012.

[6]  B. Helffer,et al.  Magnetic bottles for the Neumann problem: The case of dimension 3 , 2002 .

[7]  B. Helffer,et al.  Magnetic Bottles in Connection with Superconductivity , 2001 .

[8]  M. Shubin,et al.  Semiclassical Asymptotics and Gaps in the Spectra of Magnetic Schrödinger Operators , 2001, math/0102021.

[9]  P. Sternberg,et al.  Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity , 2000 .

[10]  Xing-Bin Pan,et al.  Eigenvalue problems of Ginzburg–Landau operator in bounded domains , 1999 .

[11]  B. Helffer,et al.  Semiclassical Analysis for the Ground State Energy of a Schrödinger Operator with Magnetic Wells , 1996 .

[12]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[13]  B. Helffer,et al.  Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) , 1988 .

[14]  A. Comtet On the Landau Levels on the Hyperbolic Plane , 1987 .

[15]  Ruishi Kuwabara On Spectra of the Laplacian on Vector Bundles , 1982 .

[16]  T. Wu,et al.  Dirac monopole without strings : monopole harmonics , 1976 .

[17]  J. Elstrodt Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil II , 1973 .