OzDES multi-object fibre spectroscopy for the Dark Energy Survey: results and second data release

We present a description of the Australian Dark Energy Survey (OzDES) and summarize the results from its 6 years of operations. Using the 2dF fibre positioner and AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope, OzDES has monitored 771 active galactic nuclei, classified hundreds of supernovae, and obtained redshifts for thousands of galaxies that hosted a transient within the 10 deep fields of the Dark Energy Survey. We also present the second OzDES data release, containing the redshifts of almost 30 000 sources, some as faint as rAB = 24 mag, and 375 000 individual spectra. These data, in combination with the time-series photometry from the Dark Energy Survey, will be used to measure the expansion history of the Universe out to z ∼ 1.2 and the masses of hundreds of black holes out to z ∼ 4. OzDES is a template for future surveys that combine simultaneous monitoring of targets with wide-field imaging cameras and wide-field multi-object spectrographs.

[1]  J. Frieman,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields , 2018, The Astrophysical Journal Supplement Series.

[2]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[3]  Sergey E. Koposov,et al.  The southern stellar stream spectroscopic survey (S5): Overview, target selection, data reduction, validation, and early science , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  Naonori Ueda,et al.  The Hyper Suprime-Cam SSP transient survey in COSMOS: Overview , 2019, Publications of the Astronomical Society of Japan.

[5]  M. Sullivan,et al.  4MOST Consortium Survey 10: The Time-Domain Extragalactic Survey (TiDES) , 2019, 1903.02476.

[6]  D. Boudon,et al.  4MOST: Project overview and information for the First Call for Proposals , 2019, 1903.02464.

[7]  T. Dwelly,et al.  4MOST Survey Strategy Plan , 2019, 1903.02466.

[8]  N. E. Sommer,et al.  C iv black hole mass measurements with the Australian Dark Energy Survey (OzDES) , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  R. Nichol,et al.  Superluminous supernovae from the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  D. Gerdes,et al.  Chemical Abundance Analysis of Tucana III, the Second r-process Enhanced Ultra-faint Dwarf Galaxy , 2018, The Astrophysical Journal.

[11]  A. K. Qin,et al.  Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  N. E. Sommer,et al.  First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters , 2018, The Astrophysical Journal.

[13]  A R Walker,et al.  Cosmological Constraints from Multiple Probes in the Dark Energy Survey. , 2018, Physical review letters.

[14]  Barcelona Institute of Science and Technology , 2018, The Grants Register 2019.

[15]  D. Gerdes,et al.  Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits , 2018, The Astronomical Journal.

[16]  M. Jarvis,et al.  Deep Extragalactic VIsible Legacy Survey (DEVILS): motivation,design, and target catalogue , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  N. E. Sommer,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey , 2017, The Astrophysical Journal.

[19]  Eric Suchyta,et al.  DES science portal: Computing photometric redshifts , 2017, Astron. Comput..

[20]  R. Nichol,et al.  Dark Energy Survey year 1 results: Galaxy-galaxy lensing , 2017, Physical Review D.

[21]  R. Nichol,et al.  Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two , 2017, 1712.04535.

[22]  D. Gerdes,et al.  Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993 , 2017, 1710.06748.

[23]  N. E. Sommer,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release , 2017, 1708.04526.

[24]  C. Heymans,et al.  2dFLenS and KiDS: determining source redshift distributions with cross-correlations , 2016, 1611.07578.

[25]  T. Davis,et al.  The need for accurate redshifts in supernova cosmology , 2016, 1610.07695.

[26]  Karl Glazebrook,et al.  Marz: Manual and automatic redshifting software , 2016, Astron. Comput..

[27]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[28]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[29]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[30]  N. Clerc,et al.  The XXL Survey - I. Scientific motivations − XMM-Newton observing plan − Follow-up observations and simulation programme , 2015, 1512.04317.

[31]  R. Nichol,et al.  OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA , 2015, 1512.03062.

[32]  D. Shupe,et al.  THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT , 2015, 1508.07302.

[33]  R. P. Norris,et al.  ATLAS - I. Third release of 1.4 GHz mosaics and component catalogues , 2015, 1508.03150.

[34]  R. Nichol,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results , 2015, 1504.03039.

[35]  Manda Banerji,et al.  Simulations of the OzDES AGN reverberation mapping project , 2015, 1504.03031.

[36]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[37]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[38]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[39]  M. Wagner,et al.  AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.

[40]  H. Hoekstra,et al.  SPECTROSCOPIC CONFIRMATION OF A MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTER AT z = 1.34 IN THE SpARCS-SOUTH CLUSTER SURVEY , 2008, 0810.0005.

[41]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[42]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[43]  Jordi Isern i Vilaboy L'Institut d'Estudis Espacials de Catalunya (IEEC) , 2001 .

[44]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.