Different interpretations of triangular norms and related operations

Triangular norms (and triangular conorms and uni-norms) can be treated as semigroup, two-place function, also as commutative semiring multiplications. It can also be derived from the difference operation in a difference poset. We discuss here these different interpretations and their consequences.

[1]  E. Pap Null-Additive Set Functions , 1995 .

[2]  K. Iseki An introduction to the theory of BCK-algebra , 1978 .

[3]  K. Iseki,et al.  AN INTRODUCTION TO THE THEORY OF THE BCK-ALGEBRAS , 1978 .

[4]  S. Weber ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥ , 1984 .

[5]  Victor Pavlovich Maslov,et al.  Advances in Soviet mathematics , 1990 .

[6]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[7]  J. Dombi Basic concepts for a theory of evaluation: The aggregative operator , 1982 .

[8]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[9]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[10]  R. Mesiar,et al.  Extensions of real-valued difference posets , 1994 .

[11]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[12]  János Fodor,et al.  A characterization of the Hamacher family of t -norms , 1994 .

[13]  J. Aczél,et al.  Sur les opérations définies pour nombres réels , 1948 .

[14]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[15]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[16]  W. M. Faucett Compact semigroups irreducibly connected between two idempotents , 1955 .

[17]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[18]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[19]  Joan Torrens,et al.  Duality for a class of binary operations on [0, 1] , 1992 .

[20]  D. Butnariu,et al.  Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .

[21]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[22]  FUZZY SETS, DIFFERENCE POSETS AND MV-ALGEBRAS , 1995 .

[23]  Milos S. Kurilic,et al.  A family of strict and discontinuous triangular norms , 1998, Fuzzy Sets Syst..

[24]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Sugeno,et al.  Pseudo-additive measures and integrals , 1987 .

[26]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[27]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[28]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[29]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[30]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[31]  Jonathan S. Golan,et al.  The theory of semirings with applications in mathematics and theoretical computer science , 1992, Pitman monographs and surveys in pure and applied mathematics.

[32]  J. Aczél,et al.  Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements , 1982 .