One-variable fragments of intermediate logics over linear frames

Abstract A correspondence is established between one-variable fragments of (first-order) intermediate logics defined over a fixed countable linear frame and Godel modal logics defined over many-valued equivalence relations with values in a closed subset of the real unit interval. It is also shown that each of these logics can be interpreted in the one-variable fragment of the corresponding constant domain intermediate logic, which is equivalent to a Godel modal logic defined over (crisp) equivalence relations. Although the latter modal logics in general lack the finite model property with respect to their frame semantics, an alternative semantics is defined that has this property and used to establish co-NP-completeness results for the one-variable fragments of the corresponding intermediate logics both with and without constant domains.

[1]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[2]  Giovanna Corsi,et al.  Completeness theorem for dummett's LC quantified and some of its extensions , 1992, Stud Logica.

[3]  Xavier Caicedo,et al.  Standard Gödel Modal Logics , 2010, Stud Logica.

[4]  Martine De Cock,et al.  Spatial reasoning in a fuzzy region connection calculus , 2009, Artif. Intell..

[5]  Sabine Gornemann,et al.  A Logic Stronger Than Intuitionism , 1971, J. Symb. Log..

[6]  Arnold Beckmann,et al.  Linear Kripke frames and Gödel logics , 2007, Journal of Symbolic Logic.

[7]  Martin Goldstern,et al.  Continuous Fraïssé Conjecture , 2004, Order.

[8]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[9]  Xavier Caicedo,et al.  The One-Variable Fragment of Corsi Logic , 2019, WoLLIC.

[10]  Nobu-Yuki Suzuki Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics , 1990, Stud Logica.

[11]  Lluis Godo,et al.  A connection between Similarity Logic Programming and Gödel Modal Logic , 2005, EUSFLAT Conf..

[12]  Nicola Olivetti,et al.  Towards a Proof Theory of Gödel Modal Logics , 2011, Log. Methods Comput. Sci..

[13]  Alfred Horn,et al.  Logic with truth values in A linearly ordered heyting algebra , 1969, Journal of Symbolic Logic.

[14]  Matthias Baaz,et al.  First-order Gödel logics , 2007, Ann. Pure Appl. Log..

[15]  Xavier Caicedo,et al.  Decidability of Order-Based Modal Logics , 2016 .

[16]  Mitio Takano Ordered sets R and Q as bases of Kripke models , 1987, Stud Logica.

[17]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[18]  Arnold Beckmann,et al.  Separating intermediate predicate logics of well-founded and dually well-founded structures by monadic sentences , 2015, J. Log. Comput..

[19]  Dmitry Shkatov,et al.  Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter , 2017, Stud Logica.

[20]  Rafael Peñaloza,et al.  The limits of decidability in fuzzy description logics with general concept inclusions , 2015, Artif. Intell..

[21]  Petr Hájek,et al.  On fuzzy modal logics S5(L) , 2010, Fuzzy Sets Syst..

[22]  Rosalie Iemhoff A Note on Linear Kripke Models , 2005, J. Log. Comput..

[23]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras. Part I , 1998, Stud Logica.

[24]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[25]  Claudia Faggian,et al.  Ludics with Repetitions (Exponentials, Interactive Types and Completeness) , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[26]  Mitio Takano,et al.  Intermediate predicate logics determined by ordinals , 1990, Journal of Symbolic Logic.

[27]  Xavier Caicedo,et al.  Bi-modal Gödel logic over [0, 1]-valued Kripke frames , 2011, J. Log. Comput..

[28]  Lluis Godo,et al.  Possibilistic Semantics for a Modal KD45 Extension of Gödel Fuzzy Logic , 2016, IPMU.

[29]  Lluis Godo,et al.  Extending possibilistic logic over Gödel logic , 2011, Int. J. Approx. Reason..

[30]  H. Ono On Some Intuitionistic Modal Logics , 1977 .

[31]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[32]  Michael Zakharyaschev,et al.  Undecidability of first-order intuitionistic and modal logics with two variables , 2005, Bull. Symb. Log..

[33]  R. A. Bull MIPC as the Formalisation of an Intuitionist Concept of Modality , 1966, J. Symb. Log..

[34]  Matthias Baaz,et al.  First-order satisfiability in Gödel logics: An NP-complete fragment , 2011, Theor. Comput. Sci..