Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends

Abstract In this study, the accuracy of the MODerate resolution Imaging Spectroradiometer (MODIS) combined Terra (MOD) and Aqua (MYD) 16-day albedo product (MCD43) is evaluated through comparisons with eleven years of in situ measurements at 17 automatic weather stations on the Greenland Ice Sheet. Taking into consideration accuracy issues with in situ observations, results show that utilizing all high-quality, cloud-free MODIS retrievals gives physically realistic ice sheet albedo values for solar zenith angles less than 75°, with a root-mean-square error of 0.067 (RMSE) and an overall mean bias of + 0.022 (with the MODIS data biased slightly high relative to the in situ data). Using this data set, changes in ice sheet albedo from 2000 to 2012 are documented. Analysis reveals negative trends in ice sheet albedo during summer over the 13-year data record, with persistent negative albedo anomalies in recent years over western Greenland. During summer 2012, extensive surface melt resulted in a Greenland area-averaged albedo anomaly for June, July August relative to 2000–2009 of − 0.044 that significantly increased the amount of total absorbed solar radiation and surface melt.

[1]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[2]  Alan H. Strahler,et al.  Consistency of MODIS surface BRDF/Albedo retrievals 1. Algorithm performance , 2003 .

[3]  J. Cassano,et al.  Circulation and surface controls on the lower tropospheric air temperature field of the Arctic , 2011 .

[4]  R. Barry,et al.  Atmospheric Water Vapor Characteristics at 70°N. , 1995 .

[5]  B. Smith,et al.  Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations , 2008 .

[6]  D. Morton,et al.  Impact of sensor degradation on the MODIS NDVI time series , 2012 .

[7]  Edward Hanna,et al.  Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming , 2008 .

[8]  I. Simmonds,et al.  Increasing fall‐winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification , 2010 .

[9]  M. Holland,et al.  The emergence of surface-based Arctic amplification , 2008 .

[10]  Jason E. Box,et al.  Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840–2010) , 2013 .

[11]  C. Woodcock,et al.  Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation , 2003 .

[12]  N. DiGirolamo,et al.  Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS , 2013 .

[13]  S. Warren,et al.  Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near‐infrared wavelengths , 1994 .

[14]  J. Oerlemans,et al.  An explanation for the dark region in the western melt zone of the Greenland ice sheet , 2010 .

[15]  M. Dubey,et al.  Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation , 2009 .

[16]  Alan H. Strahler,et al.  Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  I. Simmonds,et al.  The central role of diminishing sea ice in recent Arctic temperature amplification , 2010, Nature.

[18]  Alan H. Strahler,et al.  Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland , 2011 .

[19]  R. Barry,et al.  Processes and impacts of Arctic amplification: A research synthesis , 2011 .

[20]  J. Oerlemans,et al.  Dust from the dark region in the western ablation zone of the Greenland ice sheet , 2010 .

[21]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[22]  K. Steffen,et al.  Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records , 2012 .

[23]  X. Fettweis,et al.  Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012 , 2013 .

[24]  Julienne C. Stroeve,et al.  Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet , 2006 .

[25]  Xavier Fettweis,et al.  The role of albedo and accumulation in the 2010 melting record in Greenland , 2011 .

[26]  D. Bromwich,et al.  Greenland Ice Sheet Surface Air Temperature Variability: 1840–2007* , 2009 .

[27]  Crystal B. Schaaf,et al.  Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements , 2005 .

[28]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[29]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[30]  C. Woodcock,et al.  Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra , 2012 .

[31]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[32]  T. Grenfell,et al.  Spectral albedos of an alpine snowpack , 1981 .

[33]  X. Fettweis,et al.  Future projections of the Greenland ice sheet energy balance driving the surface melt , 2013 .

[34]  Janneke Ettema,et al.  Surface radiation balance in the ablation zone of the west Greenland ice sheet , 2008 .

[35]  Feng Gao,et al.  Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes , 2010 .

[36]  Charles S. Zender,et al.  MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland , 2009 .

[37]  Yanmin Shuai,et al.  Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle , 2009 .

[38]  Bin Wang,et al.  Climate control of the global tropical storm days (1965–2008) , 2010 .

[39]  E. Hunter,et al.  Drivers of declining sea ice in the Arctic winter: A tale of two seas , 2007 .

[40]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[41]  J. Fyfe,et al.  The role of poleward energy transport in Arctic temperature evolution , 2010 .

[42]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .

[43]  Alan H. Strahler,et al.  Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance , 2003 .

[44]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[45]  Ian M. Howat,et al.  A new bed elevation dataset for Greenland , 2012 .

[46]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[47]  Thomas L. Mote,et al.  Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007 , 2007 .

[48]  Xavier Fettweis,et al.  Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data , 2012 .

[49]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[50]  Robert N. Swift,et al.  Greenland Ice Sheet: Increased coastal thinning , 2004 .

[51]  Stephen F. Ackley,et al.  Antarctic summer sea ice concentration and extent: comparison of ODEN 2006 ship observations, satellite passive microwave and NIC sea ice charts , 2008 .

[52]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[53]  K. Steffen,et al.  July 2012 Greenland melt extent enhanced by low-level liquid clouds , 2013, Nature.

[54]  M. Holland,et al.  Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations , 2012 .

[55]  Son V. Nghiem,et al.  The extreme melt across the Greenland ice sheet in 2012 , 2012 .

[56]  J. Blanchet Toward estimation of climatic effects due to arctic aerosols , 1989 .

[57]  J. Key,et al.  Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .

[58]  Andrew Shepherd,et al.  Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets , 2007, Science.