Stability of a delay difference system

We consider the stability problem for the difference system xn = Axn-1 + Bxn-k, where A, B are real matrixes and the delay k is a positive integer. In the case A = -I, the equation is asymptotically stable if and only if all eigenvalues of the matrix B lie inside a special stability oval in the complex plane. If k is odd, then the oval is in the right half-plane, otherwise, in the left half-plane. If ||A|| + ||B|| < 1, then the equation is asymptotically stable. We derive explicit sufficient stability conditions for A ≃ I and A ≃ -I.

[1]  Yu. P. Nikolaev The Geometry of D-Decomposition of a Two-Dimensional Plane of Arbitrary Coefficients of the Characteristic Polynomial of a Discrete System , 2004 .

[2]  I. S. Levitskaya A note on the stability oval for , 2005 .

[3]  István Györi,et al.  Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments , 1994 .

[4]  Eduardo Liz,et al.  A note on the global stability of generalized difference equations , 2002, Appl. Math. Lett..

[5]  L. Berezanskya,et al.  On exponential dichotomy , Bohl – Perron type theorems and stability of difference equations , 2005 .

[6]  Vassilis G. Papanicolaou On the Asymptotic Stability of a Class of Linear Difference Equations , 1996 .

[7]  L. Berezansky,et al.  On exponential dichotomy, Bohl-Perron type theorems and stability of difference equations , 2005 .

[8]  M. Brodmann,et al.  Asymptotic Stability of Ass(M/I n M) , 1979 .

[9]  Yu. P. Nikolaev The Set of Stable Polynomials of Linear Discrete Systems: Its Geometry , 2002 .

[10]  Josef Diblík,et al.  Representation of solutions of discrete delayed system x(k+1)=Ax(k)+Bx(k−m)+f(k) with commutative matrices , 2006 .

[11]  M. M. Kipnis,et al.  Stability of the Trinomial Linear Difference Equations with Two Delays , 2004 .

[12]  S. A. Kuruklis,et al.  The Asymptotic Stability of xn+1 − axn + bxn−k = 0 , 1994 .

[13]  R M May,et al.  A note on difference-delay equations. , 1976, Theoretical population biology.

[14]  Strongly Discontinuous Semigroups EXPONENTIAL DICHOTOMY OF , 1984 .

[15]  Elena Braverman,et al.  Sufficient conditions for the global stability of nonautonomous higher order difference equations , 2005, Journal of Difference Equations and Applications.

[16]  Eduardo Liz,et al.  Asymptotic estimates and exponential stability for higher-order monotone difference equations , 2005 .

[17]  A. Cohn,et al.  Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .

[18]  F. Dannan,et al.  The Asymptotic Stability of , 2004 .