Optical interaction of space and wavelength in high-resolution digital imagers

Precise simulation of digital camera architectures requires an accurate description of how the radiance image is transformed by optics and sampled by the image sensor array. Both for diffraction-limited imaging and for all practical lenses, the width of the optical-point-spread function differs at each wavelength. These differences are relatively small compared to coarse pixel sizes (6μm-8μm). But as pixel size decreases, to say 1.5μm-3μm, wavelength-dependent point-spread functions have a significant impact on the sensor response. We provide a theoretical treatment of how the interaction of spatial and wavelength properties influences the response of high-resolution color imagers. We then describe a model of these factors and an experimental evaluation of the model's computational accuracy.