Parameter Estimation for RANS Models Using Approximate Bayesian Computation

We use approximate Bayesian computation (ABC) to estimate unknown parameter values, as well as their uncertainties, in Reynolds-averaged Navier-Stokes (RANS) simulations of turbulent flows. The ABC method approximates posterior distributions of model parameters, but does not require the direct computation, or estimation, of a likelihood function. Compared to full Bayesian analyses, ABC thus provides a faster and more flexible parameter estimation for complex models and a wide range of reference data. In this paper, we describe the ABC approach, including the use of a calibration step, adaptive proposal, and Markov chain Monte Carlo (MCMC) technique to accelerate the parameter estimation, resulting in an improved ABC approach, denoted ABC-IMCMC. As a test of the classic ABC rejection algorithm, we estimate parameters in a nonequilibrium RANS model using reference data from direct numerical simulations of periodically sheared homogeneous turbulence. We then demonstrate the use of ABC-IMCMC to estimate parameters in the Menter shear-stress-transport (SST) model using experimental reference data for an axisymmetric transonic bump. We show that the accuracy of the SST model for this test case can be improved using ABC-IMCMC, indicating that ABC-IMCMC is a promising method for the calibration of RANS models using a wide range of reference data.

[1]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[2]  Hester Bijl,et al.  Bayesian estimates of parameter variability in the k-ε turbulence model , 2014, J. Comput. Phys..

[3]  Julia Ling,et al.  Robust Bayesian Calibration of a k−ε Model for Compressible Jet-in-Crossflow Simulations , 2018, AIAA Journal.

[4]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[5]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[6]  Chao Yan,et al.  Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer , 2019, International Journal of Heat and Mass Transfer.

[7]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[8]  Song Fu,et al.  An efficient approach for quantifying parameter uncertainty in the SST turbulence model , 2019, Computers & Fluids.

[9]  W. Dahm,et al.  Nonlocal form of the rapid pressure-strain correlation in turbulent flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Timothy G. Trucano,et al.  Validation Methodology in Computational Fluid Dynamics , 2000 .

[11]  Yanan Fan,et al.  Handbook of Approximate Bayesian Computation , 2018 .

[12]  T. B. Gatski,et al.  Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows , 2000 .

[13]  M. Gutmann,et al.  Approximate Bayesian Computation , 2019, Annual Review of Statistics and Its Application.

[14]  Frequency response of periodically sheared homogeneous turbulence , 2009 .

[15]  Peter E. Hamlington,et al.  Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation , 2018, Physical Review Fluids.

[16]  Thomas B. Gatski,et al.  Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach , 1990 .

[17]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[18]  Srinivasan Arunajatesan,et al.  Bayesian calibration of a k-e turbulence model for predictive jet-in-crossflow simulations. , 2014 .

[19]  A. N. Pettitt,et al.  Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.

[20]  D. A. Johnson,et al.  Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model , 1986 .

[21]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[23]  Sai Hung Cheung,et al.  Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..

[24]  Umberto Picchini Inference for SDE Models via Approximate Bayesian Computation , 2012, 1204.5459.

[25]  Arne V. Johansson,et al.  An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows , 2000, Journal of Fluid Mechanics.

[26]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[27]  Olga Doronina,et al.  Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation , 2017 .

[28]  Paola Cinnella,et al.  Quantification of model uncertainty in RANS simulations: A review , 2018, Progress in Aerospace Sciences.

[29]  Robert H. Nichols,et al.  Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications , 2006 .

[30]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[31]  Olga Doronina,et al.  Turbulence Model Development Using Markov Chain Monte Carlo Approximate Bayesian Computation , 2019, AIAA Scitech 2019 Forum.

[32]  Srinivasan Arunajatesan,et al.  Learning an eddy viscosity model using shrinkage and Bayesian calibration: A jet-in-crossflow case study , 2018 .

[33]  Ye Zheng,et al.  Approximate Bayesian Computation Algorithms for Estimating Network Model Parameters , 2017, bioRxiv.

[34]  S. Arunajatesan,et al.  Bayesian Parameter Estimation of a k-ε Model for Accurate Jet-in-Crossflow Simulations , 2016 .

[35]  Sharath S. Girimaji,et al.  Direct numerical simulations of homogeneous turbulence subject to periodic shear , 2006, Journal of Fluid Mechanics.

[36]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[37]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[38]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[39]  T. Gatski,et al.  Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach , 1991, Journal of Fluid Mechanics.

[40]  Peter E. Hamlington,et al.  Reynolds stress closure for nonequilibrium effects in turbulent flows , 2008 .

[41]  M. Ihme,et al.  Modeling of Non-Equilibrium Homogeneous Turbulence in Rapidly Compressed Flows , 2014 .

[42]  L. Excoffier,et al.  Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood , 2009, Genetics.

[43]  S. Crow,et al.  Viscoelastic properties of fine-grained incompressible turbulence , 1968, Journal of Fluid Mechanics.

[44]  C. G. Speziale,et al.  Turbulence Modeling and Simulation , 2016 .

[45]  Srinivasan Arunajatesan,et al.  Estimation of k-ε parameters using surrogate models and jet-in-crossflow data , 2014 .

[46]  Peter E. Hamlington,et al.  Parameter Estimation for Subgrid-Scale Models Using Markov Chain Monte Carlo Approximate Bayesian Computation. , 2020, 2005.13993.

[47]  Habib N. Najm,et al.  Probabilistic inference of reaction rate parameters from summary statistics , 2018, Combustion Theory and Modelling.

[48]  Anna Wawrzynczak,et al.  Approximate Bayesian Computation for Estimating Parameters of Data-Consistent Forbush Decrease Model , 2018, Entropy.

[49]  S. Girimaji Fully explicit and self-consistent algebraic Reynolds stress model , 1995 .

[50]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[51]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[52]  Andrew R. Francis,et al.  The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis , 2009, Proceedings of the National Academy of Sciences.