Microwave Power Performance N-Polar GaN MISHEMTs Grown by MOCVD on SiC Substrates Using an $\hbox{Al}_{2}\hbox{O}_{3}$ Etch-Stop Technology

This letter presents the RF power performance of N-polar AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) grown by metal-organic chemical vapor deposition (MOCVD) on semi-insulating SiC substrates at 10 and 4 GHz. Additionally, an Al2 O3-based etch-stop technology was demonstrated for improving the manufacturability of N-polar GaN HEMTs with SixNy passivation. The reported output power densities of 16.7 W/mm at 10 GHz and 20.7 W/mm at 4 GHz represent the highest reported values so far for an N-polar device, at both of these frequencies. The improvements achieved in the RF output power density when compared with previously reported N-polar MISHEMTs can be attributed to high breakdown voltage of N-polar devices grown by MOCVD and high thermal conductivity of the SiC substrate.

[1]  Umesh K. Mishra,et al.  Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition , 2002 .

[2]  N. Gogneau,et al.  Growth kinetics of N-face polarity GaN by plasma-assisted molecular-beam epitaxy , 2004 .

[3]  James S. Speck,et al.  Growth and Electrical Characterization of N-face AlGaN/GaN Heterostructures , 2005 .

[4]  Umesh K. Mishra,et al.  Recessed Slant Gate AlGaN/GaN High Electron Mobility Transistors with 20.9 W/mm at 10 GHz , 2007 .

[5]  James S. Speck,et al.  N-polar GaN∕AlGaN∕GaN high electron mobility transistors , 2007 .

[6]  S. Denbaars,et al.  Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition , 2007 .

[7]  James S. Speck,et al.  Properties of N-polar AlGaN/GaN heterostructures and field effect transistors grown by metalorganic chemical vapor deposition , 2008 .

[8]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[9]  U. Mishra,et al.  High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation , 2009 .

[10]  U. Mishra,et al.  High-Performance N-Face GaN Microwave MIS-HEMTs With > 70% Power-Added Efficiency , 2009, IEEE Electron Device Letters.

[11]  S. Denbaars,et al.  Deep-Submicrometer AlGaN/GaN HEMTs With Slant Field Plates , 2009, IEEE Electron Device Letters.

[12]  S. Denbaars,et al.  Electrical properties of N-polar AlGaN/GaN high electron mobility transistors grown on SiC by metalorganic chemical vapor deposition , 2009 .

[13]  S. Denbaars,et al.  Influence of AlN interlayer on the anisotropic electron mobility and the device characteristics of N-polar AlGaN/GaN metal-insulator-semiconductor-high electron mobility transistors grown on vicinal substrates , 2010 .

[14]  James S. Speck,et al.  Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth , 2010 .

[15]  Pil Sung Park,et al.  Simulation of Short-Channel Effects in N- and Ga-Polar AlGaN/GaN HEMTs , 2011, IEEE Transactions on Electron Devices.

[16]  M. Rodwell,et al.  Al2O3 Growth on (100) In0.53Ga0.47As Initiated by Cyclic Trimethylaluminum and Hydrogen Plasma Exposures , 2011 .

[17]  S P DenBaars,et al.  N-Polar GaN MIS-HEMTs With a 12.1-W/mm Continuous-Wave Output Power Density at 4 GHz on Sapphire Substrate , 2011, IEEE Electron Device Letters.