Unique Role of Dystroglycan in Peripheral Nerve Myelination, Nodal Structure, and Sodium Channel Stabilization

[1]  J. Mendell,et al.  Disruption of Dag1 in Differentiated Skeletal Muscle Reveals a Role for Dystroglycan in Muscle Regeneration , 2002, Cell.

[2]  H. Nishino,et al.  A Myelin Galactolipid, Sulfatide, Is Essential for Maintenance of Ion Channels on Myelinated Axon But Not Essential for Initial Cluster Formation , 2002, The Journal of Neuroscience.

[3]  K. Campbell,et al.  Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies , 2002, Nature.

[4]  K. Campbell,et al.  Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy , 2002, Nature.

[5]  N. Tapinos,et al.  Contact-Dependent Demyelination by Mycobacterium leprae in the Absence of Immune Cells , 2002, Science.

[6]  Peter D Yurchenco,et al.  Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. , 2002, Journal of Cell Science.

[7]  S. Scherer,et al.  Recent progress on the molecular organization of myelinated axons , 2002, Journal of the peripheral nervous system : JPNS.

[8]  K. Matsumura,et al.  Expression of Dystroglycan and the Laminin-α2 Chain in the Rat Peripheral Nerve during Development , 2002, Experimental Neurology.

[9]  L. Wrabetz,et al.  Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons , 2002, The Journal of cell biology.

[10]  A. Beitz,et al.  Functional Interactions between Tumor and Peripheral Nerve: Morphology, Algogen Identification, and Behavioral Characterization of a New Murine Model of Cancer Pain , 2001, The Journal of Neuroscience.

[11]  J. Trimmer,et al.  Developmental clustering of ion channels at and near the node of Ranvier. , 2001, Developmental biology.

[12]  I. Nonaka,et al.  Schwann cell myelination occurred without basal lamina formation in laminin α2 chain‐null mutant (dy3K/dy3K) mice , 2001, Glia.

[13]  W. Catterall,et al.  Sodium channel β1 and β3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain , 2001, The Journal of cell biology.

[14]  P. Crino,et al.  Ezrin, radixin, and moesin are components of Schwann cell microvilli , 2001, Journal of neuroscience research.

[15]  H. Hartung,et al.  Role of integrins in the peripheral nervous system , 2001, Progress in Neurobiology.

[16]  Hugo J. Bellen,et al.  Axon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin , 2001, Neuron.

[17]  D. Sherman,et al.  Specific Disruption of a Schwann Cell Dystrophin-Related Protein Complex in a Demyelinating Neuropathy , 2001, Neuron.

[18]  Elior Peles,et al.  Contactin Orchestrates Assembly of the Septate-like Junctions at the Paranode in Myelinated Peripheral Nerve , 2001, Neuron.

[19]  K. Campbell,et al.  Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization. , 2001, Journal of cell science.

[20]  A. Mégarbané,et al.  A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. , 2001, Human molecular genetics.

[21]  P. Stankiewicz,et al.  Periaxin mutations cause recessive Dejerine-Sottas neuropathy. , 2001, American journal of human genetics.

[22]  A. Bretscher,et al.  Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Caston,et al.  Influence of cholinergic system on motor learning during aging in mice , 2001, Behavioural Brain Research.

[24]  S. Noguchi,et al.  A sarcoglycan-dystroglycan complex anchors Dp116 and utrophin in the peripheral nervous system. , 2000, Human molecular genetics.

[25]  E. Peles,et al.  Molecular domains of myelinated axons , 2000, Current Opinion in Neurobiology.

[26]  K. Campbell,et al.  Molecular basis of muscular dystrophies , 2000, Muscle & nerve.

[27]  D. Sherman,et al.  An Oligodendrocyte Cell Adhesion Molecule at the Site of Assembly of the Paranodal Axo-Glial Junction , 2000, The Journal of cell biology.

[28]  Austin G Smith,et al.  Peripheral Demyelination and Neuropathic Pain Behavior in Periaxin-Deficient Mice , 2000, Neuron.

[29]  Y. Sunada,et al.  Expression of dystroglycan and laminin-2 in peripheral nerve under axonal degeneration and regeneration , 2000, Acta Neuropathologica.

[30]  Jean-Antoine Girault,et al.  Axo-Glial Interactions Regulate the Localization of Axonal Paranodal Proteins , 1999, The Journal of cell biology.

[31]  L. Wrabetz,et al.  P0‐Cre Transgenic Mice for Inactivation of Adhesion Molecules in Schwann Cells , 1999, Annals of the New York Academy of Sciences.

[32]  P. Chance Overview of Hereditary Neuropathy with Liability to Pressure Palsies , 1999, Annals of the New York Academy of Sciences.

[33]  E. Fuchs,et al.  Myelin formation by Schwann cells in the absence of β4 integrin , 1999 .

[34]  J. Salzer,et al.  Clustering of neuronal sodium channels requires contact with myelinating Schwann cells , 1999, Journal of neurocytology.

[35]  Y. Sunada,et al.  Characterization of the Transmembrane Molecular Architecture of the Dystroglycan Complex in Schwann Cells* , 1999, The Journal of Biological Chemistry.

[36]  K. Campbell,et al.  Role of α-Dystroglycan as a Schwann Cell Receptor for Mycobacterium leprae , 1998 .

[37]  J. Engel,et al.  Sequence analysis suggests the presence of an IG-like domain in the N-terminal region of alpha-dystroglycan which was crystallized after mutation of a protease susceptible site (Arg168-->His). , 1998, Matrix biology : journal of the International Society for Matrix Biology.

[38]  John A. Faulkner,et al.  Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice , 1998, The Journal of cell biology.

[39]  K. Daniels,et al.  Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. , 1997, Human molecular genetics.

[40]  K. Campbell,et al.  Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain. , 1997, Human molecular genetics.

[41]  Y. Sunada,et al.  Peripheral nerve involvement in merosin-deficient congenital muscular dystrophy and dy mouse , 1997, Neuromuscular Disorders.

[42]  D. Yeomans,et al.  Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence , 1996, Pain.

[43]  M. Ruegg,et al.  Dystroglycan Is a Dual Receptor for Agrin and Laminin-2 in Schwann Cell Membrane* , 1996, The Journal of Biological Chemistry.

[44]  K. Campbell,et al.  Identification and Characterization of the Dystrophin Anchoring Site on β-Dystroglycan (*) , 1995, The Journal of Biological Chemistry.

[45]  D. Sherman,et al.  Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions [published erratum appears in J Cell Biol 1995 Jun;129(6):1721] , 1995, The Journal of cell biology.

[46]  V. Shetty Polyaxonal myelination in a human leprous nerve. , 1995, International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association.

[47]  K. Campbell,et al.  Dystroglycan is a binding protein of laminin and merosin in peripheral nerve , 1994, FEBS letters.

[48]  K. Rajewsky,et al.  Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. , 1994, Science.

[49]  K. Campbell,et al.  Differential expression of dystrophin, utrophin and dystrophin‐associated proteins in peripheral nerve , 1993, FEBS letters.

[50]  J. Ervasti,et al.  A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin , 1993, The Journal of cell biology.

[51]  L. Kunkel,et al.  An alternative dystrophin transcript specific to peripheral nerve , 1993, Nature Genetics.

[52]  O. Ibraghimov-Beskrovnaya,et al.  Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix , 1992, Nature.

[53]  K. Campbell,et al.  Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice , 1991, The Journal of cell biology.

[54]  A. Komiyama,et al.  Adhesion and proliferation are enhanced in vitro in Schwann cells from nerve undergoing wallerian degeneration , 1990, Journal of neuroscience research.

[55]  P. Dyck,et al.  Prevention of some electrophysiologic and biochemical abnormalities with oxygen supplementation in experimental diabetic neuropathy. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M Rydmark,et al.  Electron microscopic serial section analysis of nodes of Ranvier in lumbosacral spinal roots of the cat: ultrastructural organization of nodal compartments in fibres of different sizes , 1983, Journal of neurocytology.

[57]  E. Jaros,et al.  ATYPICAL AXON‐SCHWANN CELL RELATIONSHIPS IN THE COMMON PERONEAL NERVE OF THE DYSTROPHIC MOUSE: AN ULTRASTRUCTURAL STUDY , 1979, Neuropathology and applied neurobiology.

[58]  E. Jaros,et al.  THE NODES OF RANVIER IN THE NERVES OF MICE WITH MUSCULAR DYSTROPHY , 1977, Journal of neuropathology and experimental neurology.

[59]  V. Mizuhira,et al.  Abnormally combined myelinated and unmyelinated nerves in dystrophic mice , 1977, Journal of the Neurological Sciences.

[60]  W. Bradley,et al.  Neural abnormalities in the dystrophic mouse , 1975, Journal of the Neurological Sciences.

[61]  W. Bradley,et al.  Abnormalities of peripheral nerves in murine muscular dystrophy. , 1973, Journal of the neurological sciences.

[62]  K. Campbell,et al.  Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. , 2000, Molecular cell.

[63]  E. Fuchs,et al.  Myelin formation by Schwann cells in the absence of beta4 integrin. , 1999, Glia.