Inversion of quasi-3D DC resistivity imaging data using artificial neural networks

[1]  L. S. Edwards,et al.  A modified pseudosection for resistivity and IP , 1977 .

[2]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[3]  Klaus Spitzer,et al.  The three‐dimensional DC sensitivity for surface and subsurface sources , 1998 .

[4]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[5]  T. Günther Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements , 2004 .

[6]  T. Dahlin 2D resistivity surveying for environmental and engineering applications , 1996 .

[7]  Martin T. Hagan,et al.  Neural network design , 1995 .

[8]  T. Dahlin,et al.  Quasi-3D resistivity imaging - mapping of three dimensional structures using two dimensional DC resistivity techniques , 1997 .

[9]  Christopher C. Pain,et al.  Inversion of nuclear well‐logging data using neural networks , 2005 .

[10]  G. El-Qady,et al.  Inversion of DC resistivity data using neural networks , 2001 .

[11]  Mary M. Poulton,et al.  Neural network pattern recognition of subsurface EM images , 1992 .

[12]  Richard Ogilvy,et al.  An algorithm for the 3-D inversion of tomographic resistivity and induced polarisation data: Preliminary results , 1999 .

[13]  R. Wolke,et al.  Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .

[14]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[15]  R.K. Tiwari,et al.  One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks - a case study , 2005, Comput. Geosci..

[16]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[17]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[18]  R. Barker,et al.  Rapid least-squared inversion of apparent resisitivity pseudosections by a quasi-Newton method , 1996 .

[19]  L. E. Scales,et al.  Introduction to Non-Linear Optimization , 1985 .

[20]  R. Barker,et al.  Practical techniques for 3D resistivity surveys and data inversion1 , 1996 .

[21]  B. Irie,et al.  Capabilities of three-layered perceptrons , 1988, IEEE 1988 International Conference on Neural Networks.

[22]  Roberto Battiti,et al.  First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method , 1992, Neural Computation.

[23]  M. Waelkens,et al.  Two‐dimensional resistivity imaging: a tool in archaeoseismology. An example from ancient Sagalassos (Southwest Turkey) , 2004 .

[24]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[25]  Matthew J. Yedlin,et al.  Some refinements on the finite-difference method for 3-D dc resistivity modeling , 1996 .

[26]  Mary M. Poulton,et al.  Preprocessing GPR Signatures For Cascading Neural Network Classification , 1991 .

[27]  Constantin Cranganu,et al.  Using Artificial Neural Networks to Predict the Presence of Overpressured Zones in the Anadarko Basin, Oklahoma , 2007 .

[28]  M. Loke Tutorial : 2-D and 3-D electrical imaging surveys , 2001 .

[29]  V. Spichak,et al.  Artificial neural network inversion of magnetotelluric data in terms of three‐dimensional earth macroparameters , 2000 .

[30]  A. Casas,et al.  Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain , 2008 .